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Derivation of a fifteen gene 
prognostic panel for six cancers
Mamata F. Khirade, Girdhari Lal & Sharmila A. Bapat

The hallmarks of cancer deem biological pathways and molecules to be conserved. This approach 
may be useful for deriving a prognostic gene signature. Weighted Gene Co-expression Network 
Analysis of gene expression datasets in eleven cancer types identified modules of highly correlated 
genes and interactive networks conserved across glioblastoma, breast, ovary, colon, rectal and lung 
cancers, from which a universal classifier for tumor stratification was extracted. Specific conserved 
gene modules were validated across different microarray platforms and datasets. Strikingly, 
preserved genes within these modules defined regulatory networks associated with immune 
regulation, cell differentiation, metastases, cell migration, metastases, oncogenic transformation, 
and resistance to apoptosis and senescence, with AIF1 and PRRX1 being suggested to be master 
regulators governing these biological processes. A universal classifier from these conserved networks 
enabled execution of common set of principles across different cancers that revealed distinct, 
differential correlation of biological functions with patient survival in a cancer-specific manner. 
Correlation analysis further identified a panel of 15 risk genes with potential prognostic value, termed 
as the GBOCRL-IIPr panel [(GBM-Breast-Ovary-Colon-Rectal-Lung)–Immune–Invasion–Prognosis], 
that surprisingly, were not amongst the master regulators or important network hubs. This panel 
may now be integrated in predicting patient outcomes in the six cancers.

Current trends in cancer management focusing on tumor heterogeneity emphasize a need for patient 
stratification into discrete molecular subtypes to achieve better disease management1–3. Information 
thus obtained can provide insights into understanding tumor progression, mechanisms of drug resist-
ance and invasion, besides identifying novel therapeutic targets4. More importantly, patient care has 
been significantly enhanced as a result of biomarker based stratification of individual cancers like breast 
cancer, acute myeloid leukemia, high-grade gliomas, head and neck carcinomas and renal cell carci-
noma5–10. The identification of cancer-specific gene signatures in disease prognosis and treatment also 
remains a robust approach towards personalized medicine. Unfortunately, such approaches can increase 
the demands on drug discovery to an unpractical level11,12. Some strategies to overcome this emerge 
from the realization that within the chaos generated by heterogeneous molecular profiles of tumor exist 
ordered transformation-associated pathways which are likely to be conserved across different cancers13. 
This has led to the identification of “biological signatures” that identify common functions from con-
served gene networks and processes14. Some of the more popular signatures include stromal, invasive, 
stem cell, epithelial-mesenchymal transition (EMT), etc15–19, that are now proposed to be useful towards 
common drug target identification20. These signature components may be further applied for tumor 
classification across different tumor types to resolve similar sub-types across cancers wherein similar 
therapeutic regimes may be possible. This further raises the possibility that derivation of similar gene 
expression patterns and networks that drive transformation and tumor progression could in the long run 
improved disease management.

In an earlier approach, we had evaluated Weighted Gene Correlation Network Analysis (WGCNA) 
towards ovarian cancer tumor stratification and validated the suggested biological functions of associated 
gene networks21. In consequent informal analysis with other datasets, application of the same scheme 
of generating an adjacency matrix and organizing expression intensities for identification of functional 
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modules of correlating genes22,23 suggestively generated modules that appeared to be similar across dif-
ferent tumor types. This led to the initiation of a defined study to probe the validity of this observation. 
Thus, eleven human tumor gene expression datasets from The Cancer Genome Atlas (TCGA) were thus 
examined. Our analysis affirmed the conservation of some modules and genes in a subset of six of these 
eleven cancers. We further studied the biological functions associated with these to identify master reg-
ulators that could possibly drive the specific phenotype. This also led to the extraction of a common 
classifier from the network components and development of similar stratification strategies across these 
cancers. Further probing the correlations with patient survival led to the identification of risk genes 
that support this classification and predict subtypes with similar features in different cancers. Finally, 
we derived a 15 signature gene panel which can be applied in the predicting prognosis for six cancers.

Results
Gene co-expression relationship and network analyses identified discrete modules across dif-
ferent cancers. Statistically significant differentially expressed genes were identified in normalized 
gene expression data from the TCGA depository for eleven cancer types and individually subjected to 
Weighted Gene Correlation Network Analysis (WGCNA). For each cancer this achieved clustering into 
a specific number of gene groups referred to as modules (Supplementary Dataset 1). Modules exhibiting 
a high topological overlap were visualized on a dendrogram using Dynamic Tree Cut algorithm (Fig. 1a).

Module preservation and validation reveals co-regulated, preserved common genes between 
different cancers. Module preservation analysis was carried out at two levels to probe the robustness 
of conservation or stability–.

Identification of common enriched modules and gene sets across different cancer types. To address our 
hypothesis that some modules and genes are conserved across eleven different cancers and possibly 
define common functions, we evaluated the co-expression relationships between modules by apply-
ing module preservation statistics Z summary and medianRank across the eleven cancers (Fig.  1b; 
Supplementary Dataset 2; Supplementary Table S1). Four cancers viz. BRCA, COAD, OVCA and 
READ expressed strong module preservation, with OVCA exhibiting maximum co-expression with 
BRCA-COAD-GBM-LUAD-READ, followed by BRCA with COAD-LUAD-OVCA-READ-GBM; COAD 
with BRCA-OVCA-READ and READ with BRCA-COAD-OVCA (Fig.  1b). Moderate module preser-
vation was expressed by two cancers viz. GBM (with OVCA-LUAD-BRCA-COAD) and LUAD (with 
BRCA-COAD-GBM-OVCA). However, KIRC, KIRP, LGG, LUSC and UCEC modules show very 
poor preservation with any cancer. Further extracting details of preserved modules and genes from 

Figure 1. (a) Cluster dendrograms for (a-i to a-xi) BRCA, COAD, GBM, KIRC, KIRP, LGG, LUAD, LUSC, 
READ, UCEC, OVCA, each colour represents a specific module, n =  number of modules; (b) Percentage 
module preservation across different cancers (computation details in methods)—numbers in diagonal denote 
module preservation within each cancer type, those in bold denote strong (across BRCA-COAD-OVCA-
READ) and moderate module preservation (GBM-LUAD); (c) Strongly Preserved modules and gene sets 
BRCA-COAD-OVCA-READ; d. Moderately Preserved modules and gene sets in GBM-LUAD.
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the contingency table (Supplementary Dataset 2; Supplementary Table S2) revealed three strongly con-
served modules in BRCA-COAD-OVCA-READ, and one of which not only preserved but was in fact, 
the only module conserved in GBM-LUAD (Fig. 1c). This affirms the BRCA-OVCA-COAD-READ group 
as expressing strong module preservation, while GBM-LUAD present moderate module preservation. 
One common gene sets was associated with each of the 3 preserved modules viz. Set 1 (n =  161), Set 
2 (n =  50) and Set 3 (n =  44) in the BRCA-OVCA-COAD-READ group, while a subset of Set 1 genes 
(n =  55; referred to as the Set 1-s) was conserved in the GBM-LUAD (Fig. 1d; Supplementary Dataset 
2; Supplementary Tables S2, S3). Despite a high preservation with OVCA-LUAD-BRCA-COAD, GBM 
stratifies into the moderate group due to conservation of a single module. Together, these results pro-
vided a first definitive proof of conserved modules and genes across different cancers.

Identification of robustly conserved modules across different validation datasets. Expression datasets 
other than the TCGA available in the public domain for the six conserved cancers were used to vali-
date robustness of network module identification across different platforms and various cohorts (GEO24; 
Supplementary Dataset 3; Supplementary Table S1). Although this analysis revealed variations in num-
bers of WGCNA modules and genes, high preservation was evident across different datasets representing 
the same cancer type (Supplementary Dataset 3; Supplementary Figs S1-S2; Supplementary Dataset 3; 
Supplementary Table S2). Set 1 (n =  161) and Set 2 (n =  50) genes were moderately to strongly conserved 
in all validation datasets within the BRCA-COAD-OVCA-READ group, while Set 1-s genes were strongly 
conserved in the GBM-LUAD group (Supplementary Dataset 3; Supplementary Fig. S3); poor validation 
of Set 3 genes led to their exclusion from further analyses.

Important hub genes and transcriptional regulators are identified within each preserved 
gene set. Literature annotation identified Set 1 and Set 1-s to comprise of Transcription Factors 
(TFs), co-stimulatory molecules, cytokines-cytokine receptors, chemokines-chemokine receptors, cell 
adhesion molecules and signaling kinases involved in inflammatory and immune responses in the con-
text of cancer development and progression, while Set 2 genes include TFs and ECM molecules involved 
in cell adhesion, angiogenesis, migration and invasion (Fig. 2). We also probed co-expression networks 
that could indicate interactions and similar functionalities between enriched genes within WGCNA. 
Identifying significant genes within each set as those hubs with at least ten interacting partners revealed 
several specific important hubs within Set 1 and Set 2 genes for all 6 cancers (Supplementary Dataset 4; 

Figure 2. AIF1 and PRRX1 as master regulators interact with several genes to mediate specific 
functionalities. 



www.nature.com/scientificreports/

4Scientific RepoRts | 5:13248 | DOi: 10.1038/srep13248

Supplementary Fig. S1; Supplementary Table S1). Interestingly, although direct interactions between 
Set 1 and Set 2 hubs did not exist in any cancer, cross-talk through specific interactors was identified 
in OVCA (Supplementary Dataset 4; Supplementary Fig. S1). We scanned the interacting networks to 
find key TFs that could be crucial in regulating gene expression during development, differentiation 
and function of immune cells and/or tumor cell metastases identified AIF1, IKZF1, MNDA, SAMSN1, 
EOMES, GFI1 and KLHDC7B as significant TF-hubs within Set 1/Set 1-s gene networks in the six 
conserved tumor types (Supplementary Dataset 4; Supplementary Table S2). These TFs are known to 
mediate specific biological functions in immune regulation and/or cell migration. TBX21 (Tbet), EOMES 
and IKAROS regulate the differentiation and function of inflammatory Th1 cells; GFI modulates the 
differentiation of thymic regulatory CD4 T cells, while MNDA controls TRAIL induced apoptosis of 
granulocyte-macrophage progenitor cells. Th1 cells are known to inhibit cancer growth whereas Tregs 
makes the tumor microenvironment more immunologically suppressive. SAMSN1 is reported as being 
highly expressed in GBM tissue and has been suggested as a prognostic marker25. The Evi group of 
transcription factors are known to inhibit granulocyte—erythroid lineages and promote megakaryocytic 
differentiation26. Although KLHDC7B is reported to be highly expressed in breast cancer, its functions 
are not well studied27. Enriched Set 2 TFs (PRRX1-SNAI1-SNAI2-ZEB1-ZEB2-TWIST1) are extensively 
studied in the context of cell migration during embryonic development and tumor metastases and medi-
ate EMT28–32. These TFs are also additionally known to be associated with other features besides EMT 
including oncogenic transformation, resistance to apoptosis and senescence, cancer cell stemness, and 
can also promote tumor angiogenesis33–36.

Amongst the Set 1 TFs, AIF1 appears to be the most significant hub with maximum network interac-
tions and strong correlation with its interacting partners in the BRCA-COAD-OVCA-READ-GBM-LUAD 
group (Supplementary Dataset 4; Supplementary Fig. S2). Thus AIF1 within its hub may control expres-
sion of other TFs responsible for the development and function of immune cells involved in tumor 
growth. It is known to regulate several important co-stimulatory molecules in the tumor microenvi-
ronment that plays vital role in biological processes like immune response, inflammation, cell survival, 
apoptosis, proliferation and angiogenesis, is involved in regulating expression of cytokine and cytokine 
receptors that play a crucial role innate as well as adaptive inflammatory host defenses, apoptosis, angi-
ogenesis, cell growth etc. AIF1 also controls key chemokine receptors involved in migration of immune 
cells into the tumor micrenvironment, and can also modulate the various kinases and signaling mole-
cules; it is involved in inflammatory responses, promotes cell proliferation via activation of NFκ B/cyclin 
D1 pathway and facilitates tumor growth which implicate its association with immune modulation37,38. 
In addition to immunomodulation, our data indicates that several important cell adhesion molecules 
such as ICAM1, CD38, CD33, CD37 and CD52 may be regulated by AIF1. Further, such regulation need 
not be restricted only to cancer cells but could extend further to infiltrating immune and stromal cells 
towards making the tumor microenvironment favorable for growth and metastases. Such direct or indi-
rect interactions with several key regulatory genes towards regulation of differentiation and function of 
immune cells, controlling inflammation and promoting a tolerogenic microenvironment during tumor 
establishment makes AIF1 a candidate ‘master’ gene regulator of immunomodulation.

Within the Set 2 interacting networks, PRRX1 was the lone significant, large conserved TF-hub in the 
BRCA-COAD-OVCA-READ strongly preserved tumors although other TFs including EVI2A, EVI2B, 
TBX21, SNAI1, SNAI2, ZEB1, ZEB2 and TWIST1 were also identified from their extended interactions 
with the primary important hubs. Like AIF1, PRRX1 expression strong correlated with its interacting part-
ners, several of which were conserved across the four cancers (Supplementary Dataset 4; Supplementary 
Fig. S2). PRRX1 expression is implicated in the induction of EMT, while lowered expression confers 
colonization and stemness abilities39. Our results corroborate these findings by revealing its interactions 
with several EMT-TFs (SNAI1, SNAI2, ZEB1, ZEB2, TWIST1), ECM components (ADAM12, CDH11, 
COL5A1, THBS2, SPARC, FAP, VCAN, COL1A1, COL1A2) and also with ZNF469, which is a TF asso-
ciated with collagen synthesis and organization40. A possible regulatory role for PRRX1 is thus assigned 
in the regulation of metastases. Effectively, a cumulative effect of inflammatory and tolerogenic immune 
responses in the tumor microenvironment controlled by AIF1 and PRRX1 are identified to dictate tumor 
growth and metastasis. These findings together very importantly, suggests that the two conserved gene 
sets drive biological functions contributing to some of the hallmarks of cancer41. To confirm that regula-
tion of immunomodulation and metastasis by master regulators AIF1 and PRRX1 were not specific to the 
TCGA datasets, we independently validated gene interactions regulated by Set 1/Set 1-s and Set 2 for six 
cancers in in other datasets of six cancers (Supplementary Dataset 3; Supplementary Table 1). Consistent 
with the TCGA-based results, gene interactions in these validation datasets affirmed regulation of genes 
and TFs involved in immune responses and metastasis to be governed by AIF1 and PRRX1 respectively 
(Supplementary Dataset 5).

Stratification with Set1/Set 1-s and Set 2 genes correlates with clinical outcome. We fur-
ther defined the 44 common significant hub markers amongst the preserved gene sets (36 and 8 genes 
from Set 1 and Set 2 respectively) across the 4 strongly preserved cancers (BRCA-COAD-OVCA-READ) 
as classifiers and applied these in the stratification of TCGA tumor sample datasets into 4 classes 
(Supplementary Dataset 4; Supplementary Table S3). In each cancer, Class 1 represents expressed clas-
sifiers of both gene sets; Class 2 and Class 3 are associated with upregulated Set 1 and Set 2 classifiers 
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respectively while Class 4 represents downregulated classifiers of both sets. The 2 moderately preserved 
cancers (GBM-LUAD) were stratified into 2 classes using 33 Set 1-s gene classifiers. GSEA affirmed 
upregulation of Set 1 associated pathways in Class 1—Class 2 samples and their downregulation in 
Class 3—Class 4 for BRCA-COAD-OVCA-READ. In GBM-LUAD, Class 1 and Class 2 samples exhib-
ited upregulated and downregulated pathways associated with Set 1-s genes (Supplementary Dataset 6; 
Supplementary Figs S1-S2; Supplementary Dataset 6; Supplementary Tables S1-S2). Set 1 & Set 1-s genes 
influenced pathways of inflammatory responses and are related with cancer development and progres-
sion. Similarly, Class 1 and Class 3 across all BRCA-COAD-OVCA-READ were positively associated 
with Set 2 driven pathways whereas class 2 and 4 show a negative association (Supplementary Dataset 
6; Supplementary Fig. S3; Supplementary Dataset 6; Supplementary Table S3). Three Set 2 pathways 
including ECM-receptor interactions (govern tissue and organ morphogenesis to maintain cell and tissue 
structure and function), focal adhesion (cell motility, proliferation, differentiation, regulation of gene 
expression and cell survival) and integrin 1 (adhesion receptors in cell-extracellular matrix interactions) 
were common to all 4 cancers.

To find a correlation between these classifiers and patient prognosis, expression of Set 2 classifiers 
appears to be significantly correlate with poor clinical outcome in BRCA patients (Classes 1 and 3 vs. 
Classes 2 and 4; Fig. 3a-i,a-ii) while Set 1 classifier expression in COAD correlate significantly with poor 
clinical outcome (Classes 1 and 2 vs. Classes 3 and 4; Fig. 3b-i,b-ii). In OVCA, Class 1 patients in which 
classifiers of both gene sets are upregulated, present the worst survival as compared to any other class 
(Fig. 3c-i,c-ii), that could possibly result from complementation of biological functions to drive aggres-
sive disease and poor patient survival. On the other hand, Class 4 READ patients in which classifiers of 
both gene sets are downregulated show best prognosis as compared to any other class (Fig.  3d-i,d-ii), 
suggestive that expression of classifiers from either of the two gene sets can contribute to adverse progno-
sis. Expression of the 33 Set 1-s classifiers in GBM and LUAD Class 1 tumors associates them with poor 
prognosis as compared to Class 2 patients in which these genes are downregulated (Fig. 3e-i,e-ii,f-i,f-ii). 
Taken together, such stratification identifies differential correlation between expression of classifiers and 
patient survival.

Figure 3. Heat map representation of 44 classifiers (Set 1: n = 36; Set 2: n = 8) expression based 
stratification into four classes and associated Kaplan Meier analysis for survival in (a) BRCA (b) COAD 
(c) OVCA (d) READ; and similarly for 33 Set 1-s classifier expression based stratification into two classes in 
(e) GBM and (f) LUAD.
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This class-associated prognosis enticed us to further winnow out significant cancer-specific risk genes 
(prognostic factors) within the Set 1, Set 2 and Set 1-s genes (methods detailed in Supplementary-Dataset 7). 
Thus 23 risk genes were identified in BRCA patients and all of them were associated with Set 2 and included 
4 classifiers viz. COL5A2, FAP, COL5A1 and ADAM12 (Supplementary Dataset 7; Supplementary Fig. 
S1; Supplementary Dataset 7; Supplementary Table S1; p ≤  0.01). In case of COAD patients, 18 Set 1 
genes were identified as risk genes, 5 of which viz. PLEK, CLEC4A, LCP2, ITK and CD53 were classifiers 
(Supplementary Dataset 7; Supplementary Fig. S2; Supplementary-Dataset 7; Supplementary Table S1; 
p ≤  0.01). 12 risk genes from Set 1 and Set 2 (n =  2 and n =  10 respectively) were predicted for OVCA 
cancer, none of which were amongst the classifiers (Supplementary Dataset 7; Supplementary Fig. S3; 
Supplementary-Dataset 7; Supplementary Table S1; p ≤  0.01). 39 risk genes were predicted in READ 
patients (Supplementary Dataset 7; Supplementary Fig. S4; Supplementary Dataset 7; Supplementary 
Table S1; p ≤  0.01) 30 of which were from Set 1 (including 15 classifiers viz. PTPRC, CD33, CLEC4A, 
CYBB, AIF1, CD53, PLEK, EVI2A, CD74, CD48, LCP2, ITGB2, CD52, LAPTM5, ARHGAP15) and 9 
from Set 2 (single classifier CDH11). This further strengthens the possibility that complementation of 
biological functions between Set 1 and Set 2 genes may work against survival in OVCA and READ. 24 
of the 37 predicted risk genes in GBM were classifiers (Supplementary Dataset 7; Supplementary Fig. S5; 
Supplementary Dataset 7; Supplementary Table S1; p ≤  0.01), while 23 of the 26 predicted risk genes 
in LUAD were classifiers (Supplementary Dataset 7; Supplementary Fig. S6; Supplementary Dataset 7; 
Supplementary Table S1; p <  0.05).

Common risk genes effectively predicts survival of cancer patients. The above risk signa-
tures unique for each individual cancer involve a large number of genes for establishing prognosis. We 
hypothesized that a practical approach towards simplifying the same without compromising the pre-
dictive potential may be possible by applying selective common genes as opposed to an extensive panel 
of cancer-specific genes that would be a convenience in moving prognostic predictions to a next level 
of applications. To evaluate this, we further identified six Set 1/Set 1-s common risk factors in COAD, 
OVCA, READ, GBM and LUAD (PLEK, LCP2, CD53, MNDA, NCF2, CYBB; p <  0.05; Fig. 4a-i; OVCA 
was an outlier and failed to demonstrate any commonality in this set of genes). Similarly three Set 2 genes 

Figure 4. (a-i) Venn diagram representing common risk genes (p <  0.05); (a-ii) Projection of tumor samples 
onto the plane defined by the first and the second principal components using 6 risk genes for COAD-
READ-GBM-LUAD group, High positive shift along first PC suggests overall decrease in gene expression 
whereas negative shift denotes overall increase in gene expression; (b-i) Venn diagram and (b-ii) PCA plot 
for samples of BRCA-OVCA-READ group.
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were identified as being common to BRCA-OVCA-READ (WISP1, CTSK, ADAM12; p <  0.05; Fig. 4b-i). 
Principal component analysis (PCA) of these risk genes to observe their correlation and joint behavior 
across patients of COAD-READ-GBM-LUAD and BRCA-OVCA-READ cancers was carried out using 
first three principal components (PCs) that capture 96% of expression variance. Gene weights for first 
PC have same sign and similar values and represent a fairly uniform shift in the overall expression 
(Supplementary Dataset 7; Supplementary Table S2). Further projection of COAD-READ-GBM-LUAD 
or BRCA-OVCA-READ tumor samples onto a plane defined by the first two PCs stratified these into two 
discrete clusters based on a either a positive and negative shift along the first PC that represents differen-
tial survival (Fig. 4a-ii,b-ii). The first three PCs account for 99% of expression variance for genes, and as 
above, similar sign and weights for first PC reflect a uniform shift in overall expression (Supplementary 
Dataset 7; Supplementary Table S2).

To further evaluate the efficacy of such practicality, comparative risk predictions between individ-
ual and common risk gene signatures in each cancer were determined. Thus, risk associations with 
gene expression were first established to (prediction of high or low risk; p <  0.05) followed by corre-
lations with actual existing patient risk, that led to computation of sensitivity and specificity scores. In 
all cancers individual risk gene sensitivities and specificities ranged from 62–78% and 58–100% respec-
tively, while the 6 common risk gene signature in exhibited 57–66% sensitivity and 65–80% specificity 
COAD-READ-GBM-LUAD and the 3 common risk gene signature ranges for sensitivity and specific-
ity were 59–61% and 51–90% respectively in BRCA-OVCA-READ (Fig.  5a). Statistical evaluation of 
prognostic efficacies between individual and the common risk signatures using Mcnemar’s test assigned 
significance to prediction of high and low risk GBM-BRCA-OVCA over COAD-READ-LUAD patients 
(p <  0.05; Supplementary Dataset 7; Supplementary Tables S3-S4). Within the former group, the com-
mon risk signature prognostication was higher than that of individual risk genes for GBM patients, 
remained similar for in BRCA, and showed marginally lowered specificity in OVCA (Fig. 5a).

To further improve the prognostic prediction value for COAD-READ-LUAD, different approaches 
were tested. Since READ cancer patients showed similar prognostic efficacies for Set 1 and Set 2 genes, 
evaluating all 9 common genes (6 from Set 1 and 3 from Set 2) enhanced sensitivity and specificity to 
55% and 88% respectively (Fig.  5b). On the other hand, in COAD and LUAD a combination of the 6 
common risk genes from Set 1 with 3 most significant individual risk genes for each cancer type was 
tested, and observed to enhance prognostic efficacy (Fig. 5b; Supplementary Dataset 7; Supplementary 
Table S5). Kaplan-Meier analysis further supported these derivations since the defined gene subsets could 
successfully predict patients as being at either at a high or low risk and were further supported by 
Kaplan-Meier analysis (Fig.  5c–h; Supplementary Dataset 7; Supplementary Fig. S7). Thereby, 6 com-
mon Set 1 genes in GBM, 3 common Set 2 genes in BRCA-OVCA, 6 common Set 1 +  3 common Set 2 
genes in READ, 6 common Set 1 +  3 most significant individual genes in COAD and LUAD are highly 
prognosticative. In conclusion, this 15-gene signature as identified through a comparative risk prediction 
between the individual and common risk genes represents in GBM-BRCA-OVCA-COAD-READ-LUAD 
(GBOCRL) cancers, the biological functions of immunomodulation and invasion (II) with a high prog-
nostic (Pr) efficacy. This we termed as a GBOCRL-IIPr panel (Fig. 5i). As a final validation, we applied 
a random re-sampling strategy as described earlier42 within the TCGA data to generate 100 random 
datasets for each cancer type in which the GBOCRL-IIPr panel was further evaluated (Supplementary 
Dataset 8; Supplementary Table 1). The robust predictive power achieved in this reassessment confirmed 
the statistical significance of GBOCRL-IIPr genes in these six cancers (Fig. 5j).

Discussion
Prognostic biomarkers are realized to be one of the central features in the concept of “personalized can-
cer therapy”, due to their informative association with clinical outcomes. However, translational from 
a preliminary identification to application in the clinic is fraught with several obstacles. The utility of 
screening a set of genes for their expression to predict patient prognosis indeed, deems such an approach 
to be commercially viable only if the incidence of that particular cancer is significantly high. Thus, the 
derivation of a common prognostic panel of biomarkers could provide a promising advantage in address-
ing such practicalities in the field of biomarkers.

Studies relating to prognostic markers have largely relied on individual gene identification, that are 
often divorced from correlation with biological tumor behavior43. Within the diversity of systems analysis, 
gene co-expression studies such as WGCNA offer a robust, unbiased means of establishing cancer-specific 
networks that can be used to define and stratify tumors based on biological functions. In the present 
study, we first hypothesized the preservation of common biological networks across different cancers that 
might further find concordance with shared tumor cell properties such as those defined as hallmarks 
of cancer41. After affirming the presence of conserved genes and modules across six cancers, we applied 
their differential expression profiles to achieve patient stratification and establish class-associations with 
survival. This led us to derive a set of cancer-specific risk genes that were associated with patient prog-
nosis. From an observation that some of these genes were strikingly preserved across the cancer types 
under study and through a rigorous evaluation of the common vs. individual risk genes, we formulated a 
panel of 15 prognostic markers termed as the GBOCRL (cancer types)—IIPr panel (biological functions). 
Since cancer samples are full of random gene expression signals, we validated this panel for its predictive 
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Figure 5. (a,b) Comparison of prognostic efficacies (Sen-Sensitivity, Spe-Specificity) between (a) 
individual (indvl) vs. common (c) risk signatures and (b) individual vs. 15-gene signature for six cancers, 
$-p <  1 ×  10−8, §-p <  1 ×  10−7; (c–h) K-M plots of survival in predicted risk groups based on differential 
expression of specific gene subsets within the 15-gene signature in BRCA, COAD, OVCA, READ, GBM or 
LUAD cancers in HR (high risk) and LR (low risk) samples; (i) GBOCRL-IIPr chip for the 15-gene signature 
(first 6 genes panel (left to right)- 6 common Set 1 risk genes, second 3 genes panel—3 common Set 2 risk 
genes, third 3 genes panel—3 most significant genes from COAD, last 3 genes panel—3 most significant 
genes from LUAD); (j) Graphical representation of risk assessment of GBOCRL- IIPr panel through re-
sampling in 100 random datasets of the six cancers.
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power and achieved a significant confirmation over 100 random datasets generated by re-sampling as 
described before42, to provide a strong validation to the GBOCRL—IIPr panel.

Conserved biological pathways between breast and ovarian cancer are known44, while some of 
the identified prognostic markers are also previously reported as cancer prognostic factors. CTSK 
expression is reported to govern breast tumor progression and prognosis by promoting extracellu-
lar matrix degradation and angiogenesis45; CD53 expression was significantly associated with distant 
metastasis-free survival in ER− breast cancer patients46; ADAM12 is proposed as a biomarker and drug 
target in breast cancer47. Significantly, although we identified two master regulators viz. AIF1 and PRRX1 
within conserved biological networks, and which are possibly associated with the hallmarks of tumor  
evasion/immunomodulation and metastases respectively, neither these nor any of the other important 
hub genes were reflected as prognostic biomarkers. However it is suggest that since the 15 gene signature 
is regulated by AIF1 and PRRX1, these two TFs may be considered as novel therapeutic targets.

In conclusion, screening for expression of the GBOCRL- IIPr panel may further be commercialized 
as a microarray platform formulation and extend our findings to the clinical prognosis. Such prognosis 
based stratification of cancer patients at the time of diagnosis can be very helpful in formulating treat-
ment strategies.

Materials and Methods
A summary of methodology applied for derivation of the GBOCRL-IIPr prognotic panel is outlined in 
Supplementary Fig. 1.

Microarray expression datasets for different cancers. Cancer types selected for this study are 
based on impact of the disease on overall public health and prognosis. Among men, cancers of the lung 
and bronchus, colorectum, kidney and renal account for ~ 39% of all estimated cancer deaths (lung and 
bronchus ~ 28%, Colon and rectum ~ 8%, kidney and renal ~ 3%), while in women, cancers of lung 
and bronchus, breast, colorectum, ovary, uterine corpus and brain account for ~ 60% of all estimated 
cancer deaths (lung and bronchus ~ 26%, breast ~ 15%, colorectum ~ 9%, ovary ~ 5%, uterine corpus 
~ 3%, brain ~ 2%)48. These cancers are well represented in the TCGA datasets and hence we selected 
Level 3 normalized microarray gene expression data (UNC__AgilentG4502A_07) from TCGA data-
base (https://tcga-data.nci.nih.gov/tcga/; 15/12/2012) of 11 cancer types viz. Breast invasive carcinoma 
(BRCA, n =  599), Colon Adenocarcinoma (COAD,n =  74), Glioblastoma multiforme (GBM,n =  604), 
Kidney renal Clear cell Carcinoma (KIRC, n =  72), Kidney renal papillary cell carcinoma (KIRP,n =  16), 
Brain lower grade Glioma (LGG, n =  27), Lung Adenocarcinoma (LUAD,n =  32), Lung squamous cell 
carcinoma (LUSC, n =  155), Ovarian Cystadenocarcinoma (OVCA, n =  598), Rectum adenocarcinoma 
(READ, n =  72), Uterine Corpus Endometrioid carcinoma (UCEC, n =  54). The TCGA data source 
however, because of the stringency of its selection may potentially harbour a bias effectively built into 
the system from inclusion of only those specimens with really high quality RNA qualified through the 
QC inclusion criteria, which may not be representative of all samples. However, computational analysis 
requires such stringency and hence the bias has been overlooked in the present analysis. Validation 
datasets for six cancer types (platform: Affymetrix) were downloaded from Gene Expression Omnibus 
database (GEO; http://www.ncbi.nlm.nih.gov/geo; 7/02/2013; Supplementary Dataset 3).

Weighted gene co-expression network analysis (WGCNA) based module-construction, mod-
ule preservation statistics and identification of conserved genes. WGCNA and module pres-
ervation statistics were carried out as described earlier21,22. Gene expression data clustered into different 
number of modules for each cancer type in WGCNA. Preservation across cancers was determined by 
applying module preservation statistics Z summary and medianRank across an 11 ×  11 grid. Such analy-
sis generates 121 graphical representations of these module preservation statistics (not displayed due to 
lack of space but can be provided on request). Percentage preservation was computed from the number 
of modules preserved across 11 cancer types [percentage of module preservation=  (preserved modules/
total number of modules * 100)] that is represented as a module preservation matrix (Fig. 1b). Strong 
preservation was derived for modules with Zsummary >  10-medianRank statistics <  10, whereas moder-
ate preservation was defined as 2 <  Zsummary <  10-medianRank statistics<  10. Module preservation dif-
fered across cancer types within the matrix making it an asymmetric one; this is better understood from 
the following example. 5 modules were conserved between BRCA and COAD (10 and 11 WGCNA mod-
ules respectively); thus BRCA vs. COAD module preservation =  5/10*100 =  50%, while that for COAD 
vs. BRCA =  5/11*100 =  45.45%. Thereby, module preservation differs across the matrix and assigns it an 
asymmetry. Significant genes conserved across modules were identified using cross tabulation statistics 
and Fisher-exact test.

Identification of gene interactions among preserved sets. WGCNA was used to generate net-
work modules and visualized using Cytoscape v2.8.3. Edge weighted force directed biolayout was used 
for generation of interaction networks for Set 1 and Set 2 genes of the BRCA-COAD-OVCA-READ 
group and Set 1-s genes of GBM-LUAD group wherein hub markers were defined as those genes with 
more than 10 interactions.

https://tcga-data.nci.nih.gov/tcga/
http://www.ncbi.nlm.nih.gov/geo
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Tumor sample classification and survival analysis. Stratification of BRCA-COAD-OVCA-READ 
tumor samples was carried out based on differential expression profiles of Set 1 and Set 2 genes, while 
Set 1-s genes were used to identify classes within GBM-LUAD. Further Kaplan-Meier (K-M) analysis was 
performed using R-based packages established association of each tumor class with survival; significance 
was determined by log rank tests.

Assignment of biological significance using Gene Set Enrichment Analysis (GSEA). GSEA49 
was performed to identify biologic processes and signaling pathways regulated by Set 1-Set 2 genes for 
BRCA-COAD-OVCA-READ classes and Set 1-s genes for GBM-LUAD. Pathway networks were visual-
ized using Enrichment map in Cytoscape_v2.8.3 (p <  0.05).

Risk genes identification and computation of sensitivity and specificity. The identification of 
risk genes is detailed in Supplementary Dataset 7. Further, PERL code was used for assignment of high 
or low risk to patients using differential expression of significant risk genes (p <  0.05). Actual high and 
low risk patients were identified from TCGA data and thresholds defined as (≥ Mean (survival period) 
for each cancer) –.

(i).   high risk < 3 years>  low risk for BRCA and OVCA.
(ii).     high risk < 1 year>  low risk for COAD, READ and LUAD.
(iii).  high risk < 2 years>  low risk for GBM.

True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) events were 
identified by comparing both approaches. Sensitivity (TP/TP +  FN) and specificity (TN / TN +  FP) of 
risk genes were computed for each cancer types and Mcnemar’s test was used to identify significant 
prognostic efficacies50.

Random resampling and revalidation of panel genes. Resampling in the six cancers (from TCGA 
dataset—Supplementary Dataset 1; Supplementary Table 1) was carried out as described earlier42. Briefly, 
100 random datasets (RDs) each for BRCA, OVCA and GBM (200 samples), COAD (120 samples), 
READ (50 samples) and LUAD (20 samples) were generated using R software. Differential expression 
pattern of risk genes (GBOCRL- IIPr panel; Fig. 5i) were used for assignment of low and high risk of the 
patients. K-M analysis performed with log rank test indicated that differential expression pattern of risk 
genes significantly correlated with prediction of low and high risk groups within the RDs (p value <  0.05; 
Supplementary Dataset 8; Supplementary Table 1).
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