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Abstract

Background: A comprehensive map of the human-M. tuberculosis (MTB) protein interactome would help fill the
gaps in our understanding of the disease, and computational prediction can aid and complement experimental
studies towards this end. Several sequence-based in silico approaches tap the existing data on experimentally
validated protein-protein interactions (PPIs); these PPIs serve as templates from which novel interactions between
pathogen and host are inferred. Such comparative approaches typically make use of local sequence alignment,
which, in the absence of structural details about the interfaces mediating the template interactions, could lead to
incorrect inferences, particularly when multi-domain proteins are involved.

Results: We propose leveraging the domain-domain interaction (DDI) information in PDB complexes to score
and prioritize candidate PPIs between host and pathogen proteomes based on targeted sequence-level comparisons.
Our method picks out a small set of human-MTB protein pairs as candidates for physical interactions, and the use
of functional meta-data suggests that some of them could contribute to the in vivo molecular cross-talk between
pathogen and host that regulates the course of the infection. Further, we present numerical data for Pfam domain families
that highlights interaction specificity on the domain level. Not every instance of a pair of domains, for which
interaction evidence has been found in a few instances (i.e. structures), is likely to functionally interact. Our
sorting approach scores candidates according to how “distant” they are in sequence space from known examples of
DDIs (templates). Thus, it provides a natural way to deal with the heterogeneity in domain-level interactions.

Conclusions: Our method represents a more informed application of local alignment to the sequence-based search
for potential human-microbial interactions that uses available PPI data as a prior. Our approach is somewhat limited in
its sensitivity by the restricted size and diversity of the template dataset, but, given the rapid accumulation of solved
protein complex structures, its scope and utility are expected to keep steadily improving.
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Background
Tuberculosis (TB) continues to pose a serious global
health problem [1, 2]. The widespread prevalence of
latent as well as active forms of TB disease, and the
emerging threat of multi/extremely drug-resistant strains
of pathogenic Mycobacterium tuberculosis (MTB), the
underlying causative agent, present scientific and strategic
challenges [3–6]. Overcoming this menace will depend, in
part, on a comprehensive understanding of the molecular
crosstalk between the pathogen and its human host on
the cellular level at different stages of the disease [4].
Dissecting the tug of war between the invading bacterium
and the phagocytic host cell that internalizes it will require
mapping out the complex web of interactions between
MTB virulence factors and the host cell signaling network
that is engaged during infection. These protein-protein
interactions (PPIs) could, on the one hand, represent
the active manipulation of the host cell machinery by
the pathogen, and on the other, reveal the defensive re-
sponses mounted by the host in an attempt to clear out
the invader [7, 8].
Multiple changes are known to occur in the physiology

of the macrophage following phagocytosis of virulent
MTB [7–9]. These include disrupted trafficking and the
arrest of phagosome-lysosome fusion [5, 8], inhibition of
apoptotic and autophagic pathways [10–12], perturbed
mitochondrial function [13], increased rendoplasmic
reticulum stress [14], enhanced lipid production [15, 16],
and on a broader scale, granuloma formation [17, 18], all
of which contribute to pathogen survival inside the host.
Another dimension of complexity has been added by the
recent observation that the bacterium might be actively
rupturing the phagosomal membrane to escape into the
cytosol, leading to increased toxicity and necrotic cell
death [19]. This extensive remodeling on the host side
stems from secreted virulence factors as well as proteins
associated with the complex mycobacterial cell wall with
direct access to the exterior. In addition, a contribution
from cytosolic MTB proteins, released by the lysis of some
bacterial cells inside the phagocyte, is also possible.
Low throughput experimental studies have so far uncov-

ered and characterized around 40 binary protein-protein
interactions between MTB and human, and these have
helped shed some light on the pathophysiology of the
disease [20]. A recent attempt to expand this interaction
network harnessed the yeast two-hybrid assay (Y2H) to
map out, on the genome-wide scale, interactions between
a large set of human ORFs and a filtered set of MTB ORFs
having possible involvement in the infection process [21].
This experimental study found evidence for ~ 50 novel
possible interactions in vitro, and detailed follow-up inves-
tigation of one novel interaction, between EsxH and the
host ESCRT complex, suggested a role for this interaction
in vivo in disrupting endosomal trafficking which in turn

promotes bacterial survival. One limitation of such a high-
throughput screening approach is that, possibility of false
detections (false positives/negatives) cannot be ruled out.
Estimates suggest that Y2H has a sensitivity of only about
20% [22], and, as admitted in [21], several known interac-
tions could not be detected by their high-throughput ex-
perimental screen. These results taken together suggest
that there is still scope, and a need, for more studies that
can map out other as-yet unknown human-MTB interac-
tions and contribute to a more complete picture of the
host-pathogen interactome. Computational methods can
complement and aid experimental approaches by helping
to predict, or prioritize, potential interactions which could
guide wet lab studies. Indeed, bioinformatic, or in silico,
prediction of human-microbial PPIs has emerged as an ac-
tive area of research in recent years [23, 24].
Several computational approaches to predicting PPIs,

both within and between species, are based on the use
of sequence information of the participating proteins
[23–27]. These approaches are computationally efficient,
requiring only the use of heuristic methods for sequence
alignment, and are amenable to automation, which make
sequence-based methods suitable for making large scale
predictions on the whole-genome level. In contrast,
structure-based approaches involve homology modeling
based on known complex structures, possibly followed by
molecular dynamics simulations, and are computatonally
intensive in general [28, 29]. Thus, sequence based
methods can serve as a preliminary step to narrow down
the space of all possible host-pathogen protein pairs to a
more manageable number and help prioritize candidate in-
teractions, which could subsequently be analyzed in more
detail through structure-based modeling and/or empirical
validation. This paper proposes an improved sequence-
based methodology to identify a small set of plausible PPIs
between host and microbe proteins, starting from the
much larger set of possible pairings encompassing the full
proteomes of the two species in question.
Sequence-based methods, in general, harness the

“universe” of experimentally known PPIs, both within
and across genomes, which serve as templates to search
against [25–27, 30]. To ascertain whether a query pair of
proteins (A, B) might interact, each protein is compared
to all the proteins occurring in the template set. If the
template dataset contains an interacting pair A’-B’ such
that A’ and B’ are closely related to A and B respectively,
then the template interaction is “carried over”, and a
candidate interaction is proposed to occur between A
and B. This idea is schematically depicted in Fig. 1. Several
methods have been proposed in the past based on the
above logic, and they differ in the exact details of the way
the similarity between proteins is assessed on the se-
quence level. Nonetheless, they all are based on some
version of local sequence alignment, e.g. using BLAST,
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for detecting homology relationships between proteins
[25–27, 31–35].
BLAST is an example of heuristic local alignment [36],

and essentially looks for regions of sequence similarity
in the query and template proteins which could be
embedded within longer full-length protein sequences,
and represent a conserved functional domain, say. While
this is well suited to uncovering evolutionarily conserved
functions between proteins that can be quite dissimilar
overall, local alignment-based search comes with a poten-
tial caveat when applied to the problem of interaction pre-
diction, especially with multi-domain proteins. To see this,
one can imagine a situation such as the one depicted in
Fig. 2. The query protein M shares a conserved region
(e.g. a functional domain) with the protein T that partici-
pates in a template PPI, following from local alignment-

based search. However, the part of T actually involved in
the template PPI is distinct from the aligned region, and
may correspond to a different domain. As a consequence,
labeling M as being similar to T based on the E-value or
percentage identity of the aligned stretch might lead to
spurious prediction of a candidate interaction between M
and H, if information about the details of the interaction
(i.e. the specific regions involved in the interaction inter-
face) is not taken into account. Given that resolved crystal
structures are available for only a small fraction of the PPIs
known to date [37], this somewhat “blind” approach could
lead to false inferences, considering that the human, and
even MTB, proteome includes a significant proportion of
multi-domain proteins (Additional file 1: Figure S1).
On the other hand, imposing stringent filters on the

coverage of the template sequence in the alignment in

Fig. 1 General idea behind sequence-based PPI prediction. These approaches make use of homology relationships and knowledge about protein
interaction networks. An interaction is proposed to occur between the query protein Q and the protein T2, if Q shares similarity with the protein
T1 on the sequence level and T1 is experimentally known to interact with T2

Fig. 2 Local alignment-based comparison of protein sequences could lead to erroneous inferences when applied to the prediction of novel PPIs. In this
example, the query microbial protein M shares a subsequence (functional domain) with the host protein H1. However, the template interaction between
proteins H1 and H2 is mediated by a different domain. If this piece of information is unavailable, a spurious interaction between M and H2 may be inferred
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order to avoid the above caveat might turn out to be too re-
strictive. This constraint could cause potential interactions
to be missed out, if the query and template proteins happen
to share a highly conserved region that is sufficient for the
template interaction to occur.
Such pitfalls underscore the need to incorporate add-

itional information about the structural interface actually
mediating the template interaction into sequence-based
search for viable PPI candidates, which can improve the
quality of the predictions. Assuming that functional
domains are independently folding modular units of
protein structure and mediate inter-protein interactions,
restricting the template PPIs to the subset for which
structural information is available provides a more tar-
geted approach to search for potential PPIs. We propose
leveraging the structurally resolved protein complexes
deposited in the Protein Data Bank (PDB), and using their
interacting portions (domains) instead of the full length
protein sequences as templates in a local alignment-based
search for viable human-MTB PPIs. Combined with other
sources of information such as functional annotation, cel-
lular localization and cell type-specific gene expression
data [38], such an approach has the potential to suggest
novel, high-confidence candidates for in vivo interactions,
which could contribute to filling the gaps in our under-
standing of the disease process.

Methods
Preparation of host and pathogen protein sets
The proposed method screens for physical protein-
protein interactions between human and MTB pro-
teomes. Complete reference proteomes for H. sapiens
and the virulent M. tuberculosis strain H37Rv along
with functional meta-data for the proteins were down-
loaded from UniProt (Sept 2015). All human proteins
were retained for the subsequent search. On the other
hand, the MTB proteome was restricted to a smaller
subset composed of proteins for which there is direct
or indirect link to infection/adaptation inside the host
(and which thus are plausible candidates for physical
interactions with human proteins). In order to construct
this subset, we merged the following sources of contextual
information for MTB: (1) proteins annotated with a select
set of relevant keywords or GO cellular component terms
in UniProt (extracellular, secreted, cell wall, cell surface,
antigen, host, macrophage, monocyte); (2) all proteins de-
tected in the culture filtrate in the proteomic study by de
Souza et al. [39]; (3) all proteins containing an export sig-
nal sequence as predicted by the PSORTb (v3.0) tool [40];
and (4) all MTB ORFs which had been pre-selected on the
basis of literature curation for the Y2H screening experi-
ment in Mehra et al. [21]. The union of these datasets
provides a total of 1059 MTB proteins, covering nearly
25% of its proteome.

Structural information about domain-domain interactions
Information about domain-domain interactions in PDB
protein complexes was obtained from the iPfam (version
1.0) and 3DID (version 2015_02) databases [41, 42]. Both
these resources infer the presence of interactions between
Pfam-A domains [43] within and across subunits based on
residue-residue distances (and biochemical compatibility)
in the corresponding resolved three-dimensional struc-
tures. For increased stringency, we only retained the inter-
chain DDI information, and this list was futher pruned to
only include those domain pairs which were present in
(and thus could mediate interactions between) the pre-
selected MTB protein set and the human proteome.
Polypeptide sequences of these domains as well as the
UniProt accession numbers of their parent proteins were
extracted from the corresponding PDB files.

Comparison of MTB proteins with their orthologs
In order to highlight the potential limitations of local
sequence alignment for PPI inference, we identified
Reciprocal Best Hits (RBH) for every protein in the
MTB set using NCBI protein BLAST search (run with
default parameters, and a stringent E-value threshold of
1e-10) against the SwissProt database. RBH provides
the best match for a query protein in every other annotated
proteome, and this approach is routinely employed in com-
parative genomics to screen for orthologs [44–46]. Statis-
tics for the RBH hits (pair-wise sequence similarity and
percentage coverage in the alignment) were obtained from
the BLASTP output file. Additionally, similarity on the
domain level between every protein and its RBH partner
was quantified in terms of the jaccard index for the overlap
between their Pfam domain sets, which is a number
between 0 (no common domain) and 1 (identical domain
composition). Besides the RBH approach, we separately
obtained the above statistics for the predicted orthologs of
MTB proteins retrieved from three other databases:
Integr8 [47], eggNOG [48] and KEGG Orthology [49].

Sequence-based approach to prioritization of candidate
host-pathogen PPIs
We used Smith-Waterman (SW) local alignment im-
plemented in the EMBOSS command-line tool [50]
(BLOSUM62 substitution matrix, gap open penalty = 10,
gap extension penalty = 0.5) to scan the MTB/human pro-
teins for close matches with the interacting template
sequences. If a subsequence in an MTB protein (b) had
x% similarity with a template domain sequence T, and a
human protein (h) contained a subsequence y% similar to
the interacting partner of T, then the joint score S for the
pair (b, h) was calculated as the geometric mean of x and
y, i.e. S = √xy. Our choice of this measure follows from
[28], although we use similarity rather than the more re-
strictive sequence identity, since substitution of residues
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by other physicochemically similar residues should still
provide a good guide for structure-level closeness. In
addition, we imposed the somewhat stringent, uniform
constraint that at least 90% of each template sequence
be covered by the respective alignment. Pathogen-host
protein pairs were ranked according to their scores. A
pair could get multiple scores in principle, but every
score was treated as independent; thus, only the best
score for every pair finally matters. High-scoring pairs
are assumed to represent viable candidates for physical
protein-protein interaction, which could be probed fur-
ther through follow-up studies for their possible rele-
vance to the infection process.

Integrating large scale PPI data with evolutionary
information to enlarge the search space
Since our template dataset only includes PPIs with 3D
structural information, it is quite restricted in size. We
considered extending the coverage of our approach by
assuming that evolutionarily conserved interactions
across different species share a common underlying
pattern of domain-domain interactions. Thus, we
looked for such conserved interactions among the
much larger collection of PPIs for which some form of

experimental evidence (but not necessarily resolved
structure) is available. This procedure is outlined in
Additional file 1: Figure S3. If a functional PPI has
been reported to occur between proteins A’ and B’,
where A’ and B’ are orthologs of an interacting pair (A,
B) that is part of a structurally resolved complex, then
it is assumed that the interaction between A’ and B’ is
mediated by the same DDIs as those between (A, B),
and these domain sequences were added to the tem-
plate set. Literature evidence for PPIs was obtained
from the following online resources: IntAct, MINT,
BioGrid, DIP, HPRD and HPIDB [51–56]. The merged
(non-redundant) dataset comprised a total of ~ 400,000
PPIs involving ~ 66,700 proteins, and the interolog
search, based on the InParanoid database [57], yielded
about 1830 additional domain sequences for use as
templates. Although this exercise does not contribute
novel domain-domain interactions that are not already
present in the original template set, the inclusion of
more template sequences further improves the chances
of finding high-scoring candidates with the alignment-
based search.
The various steps involved in our methodology have

been summarized as a flow chart in Fig. 3.

Domain-domain interaction (DDI) instances from PDB structures 
(iPfam and 3DID databases) -> ~ 3200 binary inter-chain DDI 

spanning over 1300 Pfam-A domains

A filtered set of ~ 1000 MTB protein 
sequences (proteins relevant for 

infection) from UniProt

All H. sapiens protein sequences 
from UniProt

Smith-Waterman local alignment-based 
comparison of MTB/human sequences with DDI 

template sequences

MTB-human protein pairs scored according to joint sequence 
similarity (geometric mean, S) with closest DDI template.  
Filters: S > 75-90%; template sequence coverage > 90%

Evaluating potential in vivo relevance of prioritized 
MTB-human protein pairs by looking for supporting 

evidence in functional metadata/literature

Additional DDI templates 
from conserved interactions 

(interologs) in curated 
experimental PPI data

Fig. 3 Summary of the steps involved in our sequence/domain-based approach to the search for potentially novel (uncharacterized) human-microbial PPI
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Quantifying interaction specificity on the domain level,
and diversity within domain families
Domain-domain interactions can be specific, and thus, it
is quite likely that every instance of a particular pair of
domains, for which interaction evidence is found in a
few PDB complexes, will not engage in a detectable
interaction [58]. We present the following data to high-
light these differences within Pfam-A domain families:

(1)We randomly selected 50 domains that each occur
30–60 times among the proteins comprising the
large scale PPI dataset (see above). Differences among
the members of every domain family were quantified in
terms of their pair-wise sequence similarity values
(based on SW alignment), and the pair-wise differences
in sequence length scaled by the average length for that
family. The distributions of these metrics are illustrated
for the particular example of the Ulp1 protease family
C-terminal catalytic domain (PF02902) in Additional
file 1: Figure S4.

(2)We estimated the statistical association between the
interacting domains (as well as domain combinations)
listed in iPfam/3DID and a large scale physical PPI
network for E. coli. Briefly, the frequency of
occurrence of every domain pair in the positive
set (i.e. among the PPIs) was compared with its
incidence in the complement set (that comprised
all possible pairs of proteins for which no interaction
evidence has been reported). Statistical significance of
its over-representation in the PPI set was assessed in
terms of the p-value estimated by one-sided Fisher’s
exact test. There could be protein pairs for which no
interaction evidence has been reported because
they are present in different cellular locations or
not co-expressed under in vivo conditions, but
nevertheless could still be compatible to physically
interact in vitro. Thus, not all members of the
complement set are expected to be bona fide
non-interactions. In order to minimize the influence
of this confounding factor on estimation of likelihood
ratios, and refine the complement set to better reflect
the “true” negative set, we retained only those E.
coli protein pairs in the complement set which
were co-localized to the cytosol (as indicated by
their GO cellular component annotation), and
showed correlated expression (pearson correlation
coefficient > 0.5) in the M3D compendium of
microarray profiles [59].

Results
Limitation of local sequence alignment for knowledge-based
PPI inference
Local alignment of two sequences looks for matching
subsequences in longer full length proteins. Consequently,

even matches which cover only a fraction of the template
protein sequence can score high in terms of the statistical
significance (E-value) or percentage sequence similarity of
the aligned portion. If the template PPI set contains a
substantial proportion of proteins having more than
one functional domain, the possibility of ascribing spurious
interactions to protein pairs exists in the absence of struc-
tural details about the template interaction (Fig. 2). In order
to illustrate this, we have identified the Reciprocal Best Hits
(RBH) across a large number of genomes for a filtered set
of MTB proteins which might have some role to play in the
infection process (Methods). Pairwise comparison between
RBH proteins has been quantified in terms of the sequence
similarity of the local alignment and the percentage of the
hit sequence covered by the alignment. This is displayed as
a two-dimensional scatter plot in Fig. 4. The considerable
scatter along the horizontal axis, even for hits with highly
significant E-values, suggests that partial coverage of the hit
protein sequence (which could be a participant in a tem-
plate interaction) leaves room for ending up with off-target
matches as in the example in Fig. 2. Particularly when com-
paring bacteria with eukaryotes, one is likely to come across
instances of evolutionarily related proteins having diverged,
and functionally diversified, considerably. We further note
that the pair-wise similarity values also have a broad distri-
bution, a point we shall elaborate on in what follows.
Another way to depict the differences between proteins

related by RBH is shown in Fig. 5, which summarizes
pair-wise comparisons between proteins in terms of
their domain composition. The overlap between domain
sets is quantified by the jaccard index, which is maximal
(=1) when they are identical. Nearly a quarter (24%) of the
protein pairs identified by RBH do not share identical

Fig. 4 Pair-wise comparison between MTB proteins and their
Reciprocal Best Hits (RBH) in the SwissProt database identified by
two-way pBLAST search. In a number of cases, the RBH protein
sequence is only partially covered by the corresponding local alignment
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domain composition, once again underscoring the need to
factor in structural (DDI) information when proposing
potential interactions based on template PPIs. Similar
results are also found with other resources for orthologous
proteins, such as Integr8 (which was the basis for an
earlier publication on human-MTB PPI prediction
[20]), eggNOG and KEGG Orthology (Additional file 1:
Figure S2).

Using structural information in a targeted search for
candidate host-MTB protein interactions
Knowledge about interacting domains extracted from
functional complexes with structural information can be
used to suggest potential interactions between proteins
for which experimental interaction evidence is lacking.
We have made use of the set of structurally resolved
protein complexes listed in two databases, iPfam and
3DiD [41, 42], as our background dataset for domain-
level interaction information. This collection is com-
prised of a diverse set of interaction instances, including
homo and hetero-domain, intra and inter-subunit, and
multi-protein as well as dimeric interactions. About 77%
of the inter-subunit interactions are mediated by just a
single pair of domains. At the other extreme, as many as
16 pairs of interacting domains between the same two
subunits (PDB chains) have been inferred from inter-
residue distances in some of the complexes (Additional
files 2 and 3).
We have restricted our search for potential human-

MTB PPIs to a filtered set of ~ 1000 MTB proteins
which may have some functional role to play in the in-
fection process (Methods). iPfam and 3DiD taken to-
gether provide a list of 3265 binary domain-domain
(inter-chain) interactions involving 1356 Pfam domains.

Out of these, 1034 domains have at least one instance of
occurrence in the human/filtered MTB proteomes, and
they collectively yield a total of ~ 82470 pairs of MTB
and human proteins that could potentially interact.
Despite a reduction by nearly 3 orders of magnitude,

this still represents a fairly large number of possibilities.
Moreover, no distinction is being made between the dif-
ferent instances of a single domain pair for which inter-
action evidence has been found in only a few (or just
one) PDB structures. Therefore, we suggest a simple
scoring scheme to sort these plausible interactions, using
the evidence from the known DDI interfaces as a prior.
The sequences corresponding to the interacting DDI in-
stances have been extracted from the corresponding
PDB files and used as templates to scan the human and
MTB proteomes. Each “hit” has been scored in terms of
the coverage of the template sequence in the resulting
alignment (required to be > 90%) and sequence similarity
with the template in the alignment. For different thresh-
olds of varying stringency, the search yields a small set
(10–500) of prioritized MTB-host protein pairs which
could represent functional PPIs (Table 1).
The template set, which is composed of DDI instances

extracted from PDB structures, represents only a small
fraction of the known, empirically validated PPIs reported
in the literature. This imposes a limitation on our
approach, since MTB-human protein pairs are being
scored by how “close” they are on the sequence level
to template DDI instances. In order to increase the
number of template DDI sequences available to search
against and thereby increase the chances of finding
high scoring MTB-host protein pairs, we suggest
leveraging the much more extensive data available on
experimentally known PPIs, by looking for conserved
interactions (“interologs”) across species. The pattern
of domain-domain interactions mediating the PPI is also
assumed to be conserved, and this provides additional
template sequences to compare against (Additional file 1:
Figure S3). Based on a collection of ~ 400,000 experimen-
tally validated binary physical protein-protein interactions
which integrates multiple PPI databases (see Methods), an
additional ~ 1830 template domain sequences were ob-
tained, and this set contributes a further 23 MTB-human
protein pairs with scores > 0.8 (Table 2).

Fig. 5 Similarity on the level of domain composition between RBH
protein pairs. The jaccard index is a number between 0 (no shared
domain) and 1 (identical domain sets)

Table 1 Summary of results of the sequence-based search for
candidate PPIs between MTB and human, for different score
thresholds

Joint similarity
score threshold

Number of
candidate pairs

Number of
MTB proteins

Number of
human proteins

0.75 464 103 313

0.8 178 50 141

0.9 11 5 9
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Diversity within domain families and domain-level
interaction specificity
Our approach to the identification of potentially interact-
ing sequence pairs is based on a local search in sequence
space in the neighborhood of known interacting domain
instances. For a given pair of Pfam domains for which
interaction evidence exists in the PDB, not all instances of
the same two domains may interact equally effectively to
be of functional consequence [58]. Variation in the
detailed structure across different amino acid sequences
assigned to a common functional domain may be expected
to give a broad distribution in terms of interaction strength
across the different instances. Empirical support for
such interaction specificity is suggested by the follow-
ing observations:

a) Sequences identified with a common Pfam domain
can show considerable diversity in terms of both
length and sequence composition. This is suggested
by the histogram in Fig. 6, which represents the
aggregate of pair-wise sequence similarity values
estimated within ~ 50 Pfam domain families with at
least 30 instances (distinct sequences) in each family.

Two sequences assigned to the same domain can
differ by as much as 70%, and there is no discernible
difference between sequence-level conservation within
and across species (red versus blue distribution). Our
approach attempts to tap the high similarity end of this
distribution to find domain sequences in the MTB/
human proteomes that closely match the known
interactors.

b) Some domains (and even domain combinations)
showing interaction evidence in PDB complexes also
occur in non-interacting protein pairs listed in the
Negatome database [60]. This curated collection
comprises ~ 2000 pairs of mammalian proteins for
which lack of interaction was reported in small scale
experimental studies. The Negatome is a potential
source of negative training data for use in supervised
interaction prediction algorithms.

c) Several domain pairs inferred to interact from
structural information in specific instances, do not
show statistically significantly association (adjusted
p-value > 0.05) with the set of known PPIs among
the co-localized, co-expressed proteins in E. coli
(see Methods). Such a lack of statistical enrichment is
found not only for domain pairs but also for some pairs
of domain combinations (Additional file 1: Figure S5).
Although it could well be the result of incomplete
coverage and noise in the PPI dataset used, this
observation is also consistent with the idea of interaction
specificity arising from finer structural differences
among the members of a domain family [58].

The above observations, taken together, suggest differ-
ences in the ability to effectively interact across different
instances of the same pair of domains (or domain combi-
nations). Our scoring scheme based on sequence similar-
ity provides a simple way to factor in this heterogeneity,
and sort the list of host-pathogen protein pairs according
to the empirical evidence for domain-domain interactions
currently available in the PDB.

Functional characterization of the prioritized host-MTB
PPI candidates
We have arrived at a non-redundant, prioritized list of
MTB-human protein pairs, each of which contains at least
one pair of subsequences closely resembling a known DDI
instance on the sequence level. The complete list of pre-
dictions may be found in Additional files 4 and 5, and the
top-ranked protein pairs (score threshold of 0.9) are listed
in Table 3. (We attempted a comparison of our pre-
dictions with those from previously published (most
recent) studies, the outcome of which is summarized
in Additional file 6 for the reader’s convenience.) These
pairs represent candidates for physiologically relevant
protein-protein interactions. The template DDIs are

Table 2 Prioritized candidate MTB-human PPIs suggested by
the template domain-domain interactions that were derived
from the interologs of the structurally resolved complexes in
iPfam/3DID

Joint similarity
score threshold

Number of candidate
pairs (number unique
to interolog-based search)

Number of
MTB proteins

Number
of human
proteins

0.75 168 (30) 64 120

0.8 87 (23) 29 73

0.9 4 (0) 2 3

Fig. 6 Diversity on the sequence level within domain families.
Histogram of the percentage sequence similarity values resulting
from all-vs-all pairwise alignment of members assigned to a common
domain. The distribution represents the aggregate of a random selection
of 50 Pfam domains with 30–60 members in each family
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composed of both homo and hetero domain interactions,
but were restricted to only include inter-chain interfaces.
The sorted list contains a substantial fraction of interac-
tions involving heat shock proteins/chaperones, redox
proteins such as dehydrogenases, and nucleoside diphos-
phate kinases. In order to gain a better idea about the
overall functional landscape of the filtered host proteins
and possible roles in processes relevant to infection, we
have retrieved their Gene Ontology biological process
(BP) and cellular component (CC) annotations. The most
frequently appearing GO BP and CC terms are represented
in the bar plots in Figs. 7 and 8. Pathways associated with
known perturbations of the host macrophage following
infection [7], such as regulation/negative regulation of
apoptotic process (GO:0042981/GO:0043066), cellular
lipid metabolic process (GO:0044255), ER-associated
stress response (GO:0030433) and respiratory electron
transport chain (GO:0022904), occur several times among
the identified host proteins. Another possible determinant

of the in vivo relevance of predicted interactions is the
cellular location of the involved host proteins. A number
of candidate interactors present in our list are associated
with cellular components known to be relevant for in-
fection [13, 14], such as mitochondrion (GO:0005739)/
mitochondrial matrix (GO:0005759), endoplasmic reticulum
(GO:0005783) and cell surface (GO:0009986).
We further sought circumstantial evidence for the in vivo

relevance of the prioritized interactions. To this end, we
prepared a list of 462 relevant human proteins by combin-
ing datasets on host dependency factors [61], host cell
signaling pathways engaged during infection (KEGG) [49],
and proteins coded by the human genes that are linked
with susceptibility to TB (OMIM) [62]. These proteins col-
lectively comprise a functional subnetwork that determines
the host response to infection. We find 4 of these proteins
involved in 8 plausible interactions with MTB proteins
(scores > 0.7). These include HSPA9 (Stress-70 protein,
mitochondrial) and HSPD1 (60 kDa Mitochondrial heat

Table 3 Top-ranked pairs of MTB and Human proteins identified by our approach (filtered at similarity score threshold of 0.9 and
ordered by score)

MTB UniProt Acc. Human UniProt Acc. MTB Protein symbol(s) Human protein symbol(s)

P9WPU5 P25705 atpD/Rv1310/MTCY373.30 ATP5A1/ATP5A/ATP5AL2/ATPM

P9WPU5 P36542 atpD/Rv1310/MTCY373.30 ATP5C1/ATP5C/ATP5CL1

P9WNN1 P49411 tuf/Rv0685/MTCY210.02 TUFM

P9WPU7 P25705 atpA/Rv1308/MTCY373.28 ATP5A1/ATP5A/ATP5AL2/ATPM

P9WPU7 P06576 atpA/Rv1308/MTCY373.28 ATP5B/ATPMB/ATPSB

P9WPU7 P36542 atpA/Rv1308/MTCY373.28 ATP5C1/ATP5C/ATP5CL1

P9WNG9 Q5T4U5 etfA/fixB/Rv3028c/MTV012.43c ACADM/hCG_22915

P9WNG9 P38117 etfA/fixB/Rv3028c/MTV012.43c ETFB/FP585

P9WNG9 B7Z9I1 etfA/fixB/Rv3028c/MTV012.43c ACADM

P9WNG9 P11310 etfA/fixB/Rv3028c/MTV012.43c ACADM

P9WMJ9 P38646 dnaK/Rv0350/MTCY13E10.10 HSPA9/GRP75/HSPA9B/mt-HSP70

Fig. 7 Functional annotation of top-ranking human proteins. The host proteins appearing in the prioritized list of PPI candidates (score
threshold = 0.8) were assigned GO annotation. The 15 most frequently occurring GO biological process terms are shown here
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shock protein) which occur in the KEGG Tuberculosis
pathway [49], and Vcp (Transitional ER ATPase) and
ATP5C1 (ATP synthase subunit gamma, mitochondrial)
which have been previously identified as being essential
for survival of MTB inside THP-1 cells [61]. However,
these putative interactions are mediated by homo-domain
DDIs, and merely involve a human protein displaced by a
closely related (functionally homologous) MTB protein in a
multi-protein complex (as an example, the heat shock pro-
tein HSPA9 is predicted to be targeted by Dnak/Rv0350,
one of the heat shock proteins in MTB). Thus, they are
unlikely to lead to non-trivial physiological alterations
in the host cell.
Our approach picks out a few potential interactions

which could be of some interest. The secreted Hypoxia
response protein 1 of MTB (Rv2626c) is predicted to
interact with CLCN3 (H(+)/Cl(−) exchange transporter
3 (Chloride channel protein 3)) through their CBS domains
(PF00571). This latter protein is an antiporter associated
with the endosomal/phagosomal membrane, and con-
tributes to the acidification of the endosomal lumen
thereby possibly affecting vesicle trafficking [63]. GO anno-
tation also suggests a role for it in regulation of ROS
biosynthesis (GO:1903428, positive regulation of reactive
oxygen species biosynthetic process). Thus this putative
interaction may be of relevance to the survival of virulent
MTB inside the phagosome and alteration of phagosomal
maturation. Another candidate interaction involves a cell
wall-associated putative conserved ATPase (Rv0435c) in
MTB and the human vacuolar protein sorting-associated
protein 4B, VPS4B, mediated by the Pfam domain pair
AAA/ATPase family associated with various cellular
activities (PF00004) and Vps4_C/Vps4 C terminal oligo-
merisation domain (PF09336) (alternatively, also by a
homo-domain DDI between the AAA domains of the two
proteins). VPS4B is involved in the endosomal multivesi-
cular body (MVB) sorting pathway that regulates endo-
some to lysosome transport, and it has been previously

found to have a role in enveloped viral budding (HIV-1
and other lentiviruses) from the host cell [64]. We note
that another related vacuolar sorting-associated protein,
VPS33B, happens to be a known substrate for the secreted
MTB phosphatase PtpA. This interaction was earlier
shown to inactivate VPS33B leading to inhibition of acidifi-
cation of the mycobacterial phagosome [65]. The plausible
interaction with VPS4B found here also may have a role to
play in altered vesicular trafficking following phagocytic
engulfment of MTB.

Discussion
Genome-based computational methods have been employed
for several years now to help reconstruct the protein interac-
tome underlying the functional landscape in a number of
organisms [25–27, 30]. More recently, attention has been
turned to the problem of predicting PPIs between patho-
genic microbes and the human host towards gaining a better
understanding of infectious diseases [23, 24]. Comparative
methods based on local sequence alignment [31–34] are
bound to yield a significant proportion of false positives, or
negatives, unless structural (domain-level) details about the
template interactions are also properly taken into account.
However, structural information is currently available for
only a small proportion of the experimentally validated PPIs
[37]. This restricts the size of the template dataset to work
with, and is the price to be paid for improved specificity of
local alignment-based search.
We have demonstrated how the structurally resolved

complexes in the PDB [41, 42] can be tapped to suggest
potential interactions between host and pathogen proteins,
and applied it to the specific case of M. tuberculosis. Our
targeted approach may be viewed as setting an upper
bound on the performance of any comparative sequence-
based method for identifying PPI candidates that relies
purely on sequence alignment. We have proposed reducing
the occurrence of false positives (esp. in the case of multi-
domain proteins) and negatives, and increasing specificity,

Fig. 8 Cellular distribution of top-ranking human proteins. The host proteins appearing in the prioritized list of PPI candidates (score
threshold = 0.8) were assigned GO annotation. The 15 most frequently occurring GO cellular component terms are shown here
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by prioritizing the candidate interactions on the basis of
their domain-level sequence similarity with the template
proteins. On the other hand, since our approach is extrapo-
latory in nature, only those candidate protein pairs which
share similar subsequences with the template interactors
get high scores. Thus, the number of high-scoring predic-
tions that can be made, i.e. the sensitivity of the method, is
limited by the size and diversity of the template dataset
used. (We note, for instance, that our prioritized list does
not include any of the ~ 40 PPIs between MTB and human
that are experimentally known so far [20].) However, as the
number of resolved crystal structures deposited in the PDB
continues to grow at an ever increasing pace, we expect the
scope and utility of our methodology to also improve with
time, and it has the potential to provide an efficient and
cost-effective alternative to experimental high-throughput
screens for interactome mapping [21, 22].
Some earlier studies have also proposed the use of do-

main-level interaction information to screen for potential
PPIs, but those approaches essentially treat all members of
a domain family on the same footing, disregarding the dif-
ferences in interaction ability among them [32, 33, 66–69].
Thus, all occurrences of a pair of domains that could po-
tentially interact are weighted equally. However, not every
instance of a pair of domains is likely to engage in a func-
tional interaction [58]. This anticipated heterogeneity pro-
vides the rationale for our scoring scheme to sort the
candidate protein pairs. Determining whether a functional
interaction can occur between a pair of protein sequences
is, of course, a difficult question, and requires extensive bio-
chemical characterization which is beyond the scope of the
present study. We have adopted a pragmatic approach and
searched for proteins in the human/MTB proteomes which
are “close enough” in sequence space to known functional
interactions retrieved from the PDB. In a sense, the score
can be regarded as a proxy for the likelihood that an inter-
action will occur between the two candidate proteins,
although we emphasize again that low score does not by
itself imply non-interaction - improved specificity comes at
the cost of limited sensitivity.
The candidate interactions could have been prioritized

in other ways, besides the one we have adopted. For
example, the joint similarity metric could be calculated

based on only those positions in the sequence alignment
that correspond to the directly interacting residues in
the template complex (as was done in [70], for example).
This of course implicitly assumes that the interfacial
residues mediating a domain-domain interaction in dif-
ferent protein structures all line up when the corre-
sponding sequences are aligned, and thus, only these
residues would be relevant for making comparisons.
We tested this assumption on examples of interacting
domains which have multiple instances of occurrence
in iPfam/3DID. Sequence alignment of the corresponding
domain sequences suggests that the interacting residues
do not always align, and there can be considerable scatter.
This is illustrated for the particular case of the Plectin/S10
domain (PF03501) in Fig. 9. The interfacial residues
(extracted from different PDB structures) mediating its
interaction with the KH domain (PF07650) are highlighted
in yellow in the multiple sequence alignment, and it is evi-
dent that restricting the comparison to only those positions
which align with the interacting residues in the template, is
likely to result in fairly meaningless inferences. We have
based our comparisons on the full domain sequences,
because the overall three-dimensional structure of the
domain and spatial arrangement of its residues – which
decides the nature of the active site and energetics of
inter-protein interactions - is after all an emergent ‘collective’
property of the polypeptide chain, arising from the overall
physico-chemical composition of its entire sequence.
Finally, we note that the potential relevance of the

high-scoring leads picked out by our sequence-based search
could be further assessed by integration with other sources
of contextual information besides Gene Ontology, such as
large scale gene expression changes and knowledge about
the host interactome. For example, several methods have
been recently developed to infer the causal upstream regu-
lators (e.g. DNA-binding transcription factors) that might
underlie changes in the transcriptional profile at various
stages of the infection [71–73]. With the aid of curated
large scale signaling networks [74], it might be possible to
discover novel links between such alterations in regulatory
activity and some of the computationally predicted host
targets of pathogen proteins. Such an integrative analysis,
which will be reported elsewhere, could suggest novel

Fig. 9 Interfacial residues mediating a common domain-domain interaction in different complexes do not necessarily line up in the multiple sequence
alignment. The displayed alignment corresponds to the Pfam domain Plectin/S10 (PF03501), which is found to interact with the K Homology domain
(PF07650) in several PDB complexes. The sequences (domain instances) are labeled by their PDB identifiers (PDB ID, chain ID and residue numbers).
The interfacial residues involved in this DDI are highlighted in yellow, and their positions in the alignment show considerable scatter
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hypotheses regarding the molecular pathways that shape
the temporal course and eventual outcome of the disease.

Conclusions
Our analysis of local sequence alignment applied to
host-pathogen PPI prediction highlights the possibility of
drawing spurious inferences (or missing out on potential
interactions), if structural details about the template in-
teractions are not available/not taken into account. We
have proposed making use of the structurally resolved
complexes in the Protein Data Bank for more targeted
search for novel PPI candidates between human and
MTB proteins. The use of domain-domain interaction
information reduces the chances of false positives/nega-
tives from local sequence alignment-based PPI predic-
tion. Our knowledge-based approach, which looks for
similar sequences in the vicinity of known DDI templates,
acknowledges the inherent diversity within domain families
and DDI interaction specificity, for which we have provided
different lines of supporting data. Although we have illus-
trated our methodology with the specific case study of M.
tuberculosis, it is of general applicability, and should provide
a useful data-driven approach to predicting and prioritizing
potential PPIs between any pathogenic microbe and its host
that leverages the existing genomic and structural datasets
available in the public domain.
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