
September 2017 | Volume 8 | Article 11241

Review
published: 13 September 2017

doi: 10.3389/fimmu.2017.01124

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Giuseppe Sconocchia,  

Consiglio Nazionale Delle  
Ricerche (CNR), Italy

Reviewed by: 
Muller Fabbri,  

Children’s Hospital of  
Los Angeles, United States  

Julian Pardo,  
Fundación Agencia Aragonesa  

para la Investigación  
y el Desarrollo (ARAID), Spain

*Correspondence:
Girdhari Lal 

glal@nccs.res.in

Specialty section: 
This article was submitted  

to Cancer Immunity and 
Immunotherapy,  

a section of the journal  
Frontiers in Immunology

Received: 27 June 2017
Accepted: 28 August 2017

Published: 13 September 2017

Citation: 
Paul S and Lal G (2017) The 

Molecular Mechanism of  
Natural Killer Cells Function  

and Its Importance in Cancer 
Immunotherapy. 

Front. Immunol. 8:1124. 
doi: 10.3389/fimmu.2017.01124

The Molecular Mechanism of  
Natural Killer Cells Function  
and its importance in Cancer 
immunotherapy
Sourav Paul and Girdhari Lal*

National Centre for Cell Science, Pune, India

Natural killer (NK) cells are innate immune cells that show strong cytolytic function against 
physiologically stressed cells such as tumor cells and virus-infected cells. NK cells show 
a broad array of tissue distribution and phenotypic variability. NK cells express several 
activating and inhibitory receptors that recognize the altered expression of proteins 
on target cells and control the cytolytic function. NK cells have been used in several 
clinical trials to control tumor growth. However, the results are encouraging only in 
hematological malignancies but not very promising in solid tumors. Increasing evidence 
suggests that tumor microenvironment regulate the phenotype and function of NK cells. 
In this review, we discussed the NK cell phenotypes and its effector function and impact 
of the tumor microenvironment on effector and cytolytic function of NK cells. We also 
summarized various NK cell-based immunotherapeutic strategies used in the past and 
the possibilities to improve the function of NK cell for the better clinical outcome.
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iNTRODUCTiON

Natural killer (NK) cells are a group of innate immune cells that show spontaneous cytolytic activity 
against cells under stress such as tumor cells and virus-infected cells. After activation, NK cells also 
secrete several cytokines such as interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), granulocyte 
macrophage colony-stimulating factor (GM-CSF), and chemokines (CCL1, CCL2, CCL3, CCL4, 
CCL5, and CXCL8) that can modulate the function of other innate and adaptive immune cells. 
NK cells are identified as CD3−NK1.1+ cells in C57BL/6, FVB/N, and NZB strains of mice. BALB/c, 
CBA/J, AKR, C3H, DBA/1, DBA/2, NOD, SJL, and 129 strains of mice do not express NK1.1 and 
NK cells in these mice can be identified as CD3−CD49b+ cells. NK cells in human are identified as 
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Table 1 | Activating and inhibitory receptors on NK cells.

Type Receptors ligands Species

Activating 
receptors 

NKG2D Mouse: Rae1a-e, MULT-1, H60 Mouse/
humanHuman: MIC-A/-B, ULBP1–4

CD94-NKG2C Mouse: Qa1b Mouse/
humanHuman: HLA-E

Ly49D Mouse: H-2Dd Mouse
Ly49H Mouse: m157 of MCMV Mouse
KIR2DL4 Human: HLA-G Human
KIR2DS1 Human: HLA-C2 Human
KIR2DS2 Human: HLA-C1 Human
KIR2DS3 Unknown Human
KIR2DS4 Human: HLA-A11 Human
KIR2DS5 Unknown Human
KIR3DS1 Human: HLA-Bw4 Human
NKp30 Human: B7H6, BAT3, pp65 of HCMV, 

PfEMP1 of Plasmodium falciparum, 
viral HA

Human

NKp46 Heparin, viral HA and HN Mouse/
human

NKp44 Viral HA and HN, PCNA, proteoglycans Human
NKR-P1C  Mouse
NKR-P1F Mouse: Clr-g, Clr-c Mouse
NKR-P1G Mouse: Clr-g, Clr-f Mouse
DNAM-1 Mouse and human: CD112, CD155 Mouse/

human

Inhibitory 
receptors

Ly49A Mouse: H-2Db,d,k,p, H-2M3 Mouse
Ly49C Mouse: H-2Db,d,k H-2Kb,d,k m157 Mouse
Ly49I Mouse: H-2kb,s,q,v Mouse
Ly49P Mouse: H-2Dd,k Mouse
KIR2DL1 Human: HLA-C2 Human
KIR2DL2 Human: HLA-C1 Human
KIR2DL3 Human: HLA-C1 Human
KIR3DL1 Human: HLA-Bw4 Human
KIR3DL2 Human: HLA-A3,-A11 Human
NKR-P1A Human: LLTI Human
NKR-P1B Mouse: Clr-b Mouse
NKR-P1D
CD94-NKG2A Mouse: Qa1b Mouse/

humanHuman: HLA-E
ILT2 (CD85j) Human: HLA-A, -B, -C, HLA-G1,  

HCMV UL18
Human

CD244(2B4) Mouse and human: CD48 Mouse/
human
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CD3−CD56+ cells. They represent 2–7% of lymphocytes in mouse 
peripheral blood (PB) and 5–15% of human peripheral blood 
mononuclear cells (PBMCs). NK cells are present in the skin, gut, 
liver, lung, uterus, kidney, joints, and breast under physiological 
conditions. NK  cells constitute about 20–30% of total hepatic 
lymphocytes and 10% of lymphocytes in healthy human liver and 
lung, respectively (1). The specific subset of NK cell is reported 
to control the development at the fetal-maternal interface dur-
ing the first trimester of the pregnancy, and it constitutes about 
50–90% of total lymphoid cells in the uterus (2, 3). These uterine 
NK cells secrete IL-8, vascular endothelial growth factor (VEGF), 
stromal cell-derived factor-1, and interferon gamma-inducible 
protein-10 (IP-10) which help in tissue building, remodeling, 
and angiogenesis (4). NK cells in human placenta do not show 
killer activity but assist in establishing immunosuppression and 
tolerance to fetus allograft. Similar to T and B cells, NK cells also 
develop from common lymphoid progenitor cells (5). Although 
bone marrow is the primary site of NK cell development (6), they 
can also develop in the liver and thymus (7). The development 
of NK  cells progresses through various stages of maturation, 
expansion, and acquisition of specific receptors. All NK recep-
tors are germ-line encoded and independent of RAG-mediated 
recombination (8). Multiple factors such as cell-intrinsic signals 
(transcription factors) and external signals (cytokines and growth 
factors) govern the development of NK cells. NK cells constitute 
the major component of an innate immune system and play the 
crucial role in shaping the early immune response to viral infec-
tion and tumors and also in organ transplantation (9). In this 
review, we discussed what are inhibitory and activating molecules 
present on NK cells and how they control NK cell function, how 
do NK  cell function in the tumor microenvironment, use of 
NK cell as adoptive cellular therapy to control cancer and what 
are strategies to improve NK cell antitumor function.

eFFeCTOR aND ReGUlaTORY 
PHeNOTYPe OF NK CellS

Natural killer cell stimulation and effector function depend upon 
the integration of signals derived from two distinct types of 
receptors—activating and inhibitory receptors (Table 1). Normal 
healthy cells express MHC class I molecules on their surface 
which act as ligands for inhibitory receptors and contribute to 
the self-tolerance of NK  cells. However, virus-infected cells 
or tumor cells lose surface MHC class I expression, leading to 
lower inhibitory signal in NK cells. Simultaneously, cellular stress 
associated with viral infection or tumor development such as 
DNA damage response, senescence program or tumor suppressor 
genes upregulate ligands for activating receptors in these cells. 
As a result, the signal from activating receptors in NK cell shifts 
the balance toward NK cell activation and elimination of target 
cells directly through NK cell-mediated cytotoxicity or indirectly 
through secretion of pro-inflammatory cytokines (10) (Figure 1).

inhibitory Receptors on NK Cells
Inhibitory receptors signal through immunoreceptor tyrosine-
based inhibitory motifs (ITIM) present in their cytoplasmic tails. 

Upon ligand engagement, ITIMs undergo phosphorylation and 
recruit phosphatases such as Src homology-containing tyrosine 
phosphatase 1 (SHP-1), SHP-2, and lipid phosphatase SH2 
domain-containing inositol-5-phosphatase (SHIP) which further 
neutralize the activating signals (11). During NK cell inhibitory 
signaling, the phosphatases SHP-1 and SHP-2 dephosphorylate 
the immunoreceptor tyrosine-based activation motif (ITAM)-
bearing Vav-1 molecules and prevent the downstream signaling 
(12, 13) (Figure 2).

Ly49 receptors represent one of the major families of mouse 
NK cell inhibitory receptors. Ly49 receptors are type II glycopro-
tein of C-type lectin-like superfamily and composed of carboxy-
terminal lectin domain also known as NK domain (NKD) (14). 
Ly49 receptors bind to MHC class I molecules through their 
NKD, and this interaction is MHC-peptide independent. The 
Ly49 family of proteins are highly polymorphic which results in 

http://www.frontiersin.org/Immunology/
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FiGURe 1 | Missing-self recognition of target cells. The activating and inhibitory receptor signaling regulates the natural killer (NK) cells activation. Cells undergoing 
stress such as tumor cells lose their MHC class I molecules, a ligand for inhibitory receptors on NK cells. At the same time, they acquire stress-associated molecules 
which act as ligands for activating receptors. Thus, the lack of inhibitory signaling coupled with induction of activating signaling shifts the balance toward NK cell 
activation, leading to secretion of cytokines and killing of tumor cells.

3

Paul and Lal NK Cells in Cancer

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1124

heterogeneous expression among different inbred mouse strains. 
The Ly49 receptor family includes Ly49A, Ly49C, Ly49I, and Ly49P 
molecules. The prototype member Ly49A binds to H-2Dd, H-2Dk, 
and the non-classical MHC-I molecule H2-M3 while Ly49C binds 
to H-2Kb and H-2Db molecules (15). Human express functionally 
equivalent homolog of Ly49 member which are known as killer 
cell immunoglobulin-like receptor (KIR) family of proteins (16). 
KIRs are type I transmembrane protein with two or three IgG-like 
domains and a short or long cytoplasmic tail. KIRs bind to HLA-
A, -B, and -C molecules. In contrast to Ly49 family, KIRs bind to 
the peptide-binding region of HLA molecules. The heterogeneity 
of KIR repertoire expression among different individuals is due 
to the difference in the expression of KIR molecules on individual 
NK cells as well as allelic variation in KIR genes. Inhibitory KIRs 
include KIR2DL1–3, KIR2DL5, and KIR3DL1–3 (17). Both 
KIRs and inhibitory Ly49 receptors contribute to NK cell toler-
ance to self-tissues (18). CD94-natural-killer group 2, member 
A (NKG2A) is another C-type lectin family of the inhibitory 
receptor that expresses as a heterodimer and contain ITIM. This 
receptor specifically recognizes non-classical MHC molecules on 
target cells and protect host cell against inappropriate NK  cell 
activation (19, 20). Human NKG2A recognizes non-classical 
MHC molecule HLA-E (21, 22) while mouse counterpart interacts 
with the Qa1 molecule (23). There are several cytokines present in 
the tissue microenvironment that can modulate the expression of 
NKG2A and affect NK cell function.

activating Receptors on NK Cells
Lack of MHC class I on the target cell is not sufficient to trig-
ger NK  cell activation. Full NK  cell activation also requires 

recognition of stress-induced molecules by NK  cell activating 
receptors. The effector function of NK  cell utilizes integrated 
signaling from an array of activating receptors on NK  cells 
(Table  1). Most activating receptors signal through ITAMs 
defined by the sequence D/EXXYXX(L/I)X6–8YXXL/I (where 
X6–8 is 6–8 amino acids stretch between two XXL/I element). 
Engagement of receptor-ligand complexes leads to phosphoryla-
tion of ITAM by Src family of tyrosine kinases such as Lck, Fyn, 
Src, Yes, Fgr, and Lyn. Phosphorylation of ITAM subunit leads to 
recruitment and activation of the tyrosine kinase Syk and Zap70. 
The downstream signaling pathway of Zap70 phosphorylation 
involves phosphorylation of different proteins such as SLP-76, 
Shc, and phosphatidylinositol-3-OH kinase [PI(3)K], assembly of 
Grb2, linker for the activation of T cells (LAT), Vav-1, and Vav-2, 
activation of mitogen-activated protein kinases (MAPKs) and 
extracellular signal-regulated kinases (ERKs). The outcome of 
these signals result in the elevation of calcium levels and reorgani-
zation of actin cytoskeleton leading to release of cytolytic granules 
containing perforin and granzymes and transcription of cytokine 
and chemokine genes (24) (Figure 3).

The activating receptor natural-killer group 2, member D  
(NKG2D) is a C-type lectin-like type II transmembrane protein 
expressed as a homodimer on the surface of all murine and human 
NK  cells. It is also expressed by most NKT  cells and activated 
CD8+ T cells in mice, and all CD8+ T cells and a subset of γδ T cells 
in humans (25). The NKG2D receptor is a hexameric complex 
composed of single NKG2D homodimer along with two DAP10 
homodimers (26). In mice, NKG2D is present in two different iso-
forms, short isoform (NKG2D-S) and a long isoform (NKG2D-L), 
which are generated by alternative splicing (27). NKG2D-S can 
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FiGURe 3 | Schematic representation of natural killer (NK) cell activating 
receptor signaling. Interaction of activating receptor NKG2D and Ly49D with 
their cognate ligand leads to phosphorylation of YINM motif or 
immunoreceptor tyrosine-based activation motifs (ITAMs) present in the 
cytoplasmic tails of associated adapter protein such as DAP10 and DAP12. 
Phosphorylated ITAM or YINM motif recruits Syk/Zap70, PI3K, and Grb2/
Vav1/SLP-76 complex. Grb2/Vav1/SLP-76 pathway activation leads to 
downstream activation of MEK/extracellular signal-regulated kinase (ERK) 
pathway. Phosphorylated Syk recruits PLC-γ which in turn activates 
inducible protein-3 (IP-3) and DAG pathway leading to activation of 
transcription factors NF-κB and NFAT. The net result of this signaling is the 
release of cytokines and chemokines as well as cytotoxic molecules by the 
NK cells (24).

FiGURe 2 | Schematic representation of natural killer (NK) cell inhibitory 
receptor signaling. The interaction of NK cell inhibitory receptors natural-killer 
group 2, member A (NKG2A) and Ly49A with its cognate ligand leads to 
phosphorylation of immunoreceptor tyrosine-based inhibitory motif (ITIM) in 
their cytoplasmic tails. Phosphorylated ITIM recruits phosphatases such as 
Src homology domain-containing tyrosine phosphatase (SHP) and SH2 
domain-containing inositol-5-phosphatase (SHIP) that dephosphorylate 
signaling molecules such as Lck, Fyn, Syk, Zap70, and Vav1, thereby 
terminating activating receptor signaling in NK cells.
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associate with both DAP10 and DAP12 while NKG2D-L only pair 
with DAP10. NKG2D-S is not present in human and NKG2D-L 
can only associate with DAP10 in human (27). DAP10 cytoplas-
mic domain contains YINM motif which is phosphorylated by Src 
family of kinases or Jak3 kinase and recruits p85 subunit of PI3K 
or Grb2 adaptor protein. Grb2 phosphorylation induces phos-
phorylation of Vav1, PLC-γ2, and SLP-76. PI3K and Grb-Vav1 

signaling induce phosphorylation of Jak2, STAT5, Akt, MEK1/2, 
and Erk (28–31). Effector function of DAP10 signaling in NK cell is 
distinct from DAP12 signaling. Deficiency of DAP10 and DAP12 
in mice and human NK cells has shown that NKG2D-DAP12 sign-
aling can induce both cytotoxicity and cytokine secretion whereas 
signaling through DAP10 mostly activates cytotoxicity (27, 32, 33).  
The cytokines such as IL-7, IL-12, and IL-15 upregulate the 
expression of NKG2D on NK and CD8+ T cells, whereas IFN-γ 
and transforming growth factor-β (TGF-β) reduce it (34–36). 
The NKG2D molecule in human and mice binds several ligands 
which are highly polymorphic and are structural homologs of 
MHC class I molecules. The ligands of murine NKG2D are reti-
noic acid early inducible-1 family of proteins (Rae-1α-ε), murine 
UL16-binding protein-like transcript 1 (MULT1) and H60 group 
of proteins (H60a, H60b, H60c) (37–39). There are two families 
of NKG2D ligands in human, MHC class I chain-related protein 
A (MICA) and B (MICB) and UL16-binding proteins (ULBP1-6) 
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(40). NKG2D ligands are expressed at low levels in healthy adult 
cells in both mice and human (40, 41). However, these ligands 
are upregulated and widely expressed in tumors of diverse tissue 
origin. Mouse NKG2D ligands have been detected in lymphoma 
cells, lung, colon, rectal and prostate cancer cell lines (41–43). 
However, lymphoma cell lines RMA and RMA-S, and melanoma 
cell line B16F10 lack expression of NKG2D ligands (37). A wide 
range of tumors such as leukemia, glioma, neuroblastoma (NB), 
melanoma, breast, lung, colon, kidney, and prostate tumors are 
known to express human MIC and ULBP (44–48). The level of 
expression of NKG2D ligands varies significantly between tumor 
types and stages of tumor progression. Ataxia telangiectasia 
mutated kinase and Rad3-related kinase (ATR), DNA damage 
repair pathway, cytokines, and TLR signaling are known to regu-
late the expression of NKG2D ligands (49–51). Pharmacological 
drugs such as proteasome inhibitors and histone deacetylase 
inhibitors also control NKG2D ligand expression (52, 53). In addi-
tion to NKG2D, two other members of NKG2 family, NKG2C and 
NKG2E act as an activating receptor and are known to express as a 
heterodimer with the CD94 molecule (19, 54). CD94-NKG2C and 
CD94-NKG2E heterodimer recognize class Ib molecule Qa-1b and 
interact with DAP12 and activate downstream signaling (55, 56).

Although the majority of Ly49 receptors are inhibitory in 
nature, some Ly49 receptors such as Ly49D and Ly49H show 
activation function in C57BL/6 mice. Ly49D and Ly49H associ-
ated with the DAP12 molecule and transduce the signal through 
ITAM (57). Activation of the Ly49 receptor leads to phosphoryla-
tion of ITAM and recruitment of Syk tyrosine kinase (58). Ly49 
receptors on NK cells play a critical role in host defense against 
viral infection. Ly49H binds to the glycoprotein m157 protein 
of murine cytomegalovirus (MCMV) and imparts resistance to 
MCMV infection (59). Other Ly49 activating receptors such as 
Ly49D, Ly49P, and Ly49W are reported to bind H-2Dd molecules 
(60–62). The activating KIR utilizes DAP12 adapter molecule 
for downstream signaling. The generation of activating Ly49 and 
KIR molecules was thought to be a result of convergent evolution 
from their respective ancestral inhibitory receptors (63).

Natural cytotoxicity receptors (NCRs) are another immuno-
globulin superfamily of activating receptors that utilize extracel-
lular immunoglobulin-like domain for ligand binding. Human 
NK  cells express three distinct types of NCRs such as NKp46 
(NCR1 or CD335), NKp44 (NCR2 or CD336), and NKp30 
(NCR3 or CD337) while mouse NK  cells express only NKp46 
(64–66). NKp46 and NKp30 are expressed on both resting and 
activated NK  cells, whereas NKp44 expression is restricted to 
activated NK cells. NCRs can bind to adaptor proteins FcεRI-γ 
and CD3-ζ which then transduce the signal through ITAM (67). 
NCRs recognize a wide variety of ligands on target cells ranging 
from viral, bacterial and parasite proteins to molecules from 
tumor cells and other host cells (67).

The 2B4 receptor (CD244) present in mouse and human 
NK  cells belong to signaling lymphocyte activation molecule 
family of membrane receptors and depending on the adapter 
protein recruited at the cytoplasmic tail they can act as activating 
as well as an inhibitory receptor. CD244 predominantly acts as 
an inhibitory receptor in mice. NK  cells from CD244 deficient 
mice were shown to have enhanced cytotoxicity and cytokine 

secretion and also help in efficiently rejecting the B16F10 melanoma  
(68, 69). However, neutralizing antibodies to human CD244 blocks 
the killing of CD48-expressing target cells. It has been shown that 
mouse cell lines transfected with human CD48 can be efficiently 
targeted and killed by human NK cells. These studies suggest that 
CD244 acts as an activating receptor in human NK cells (70, 71). 
The activating or inhibitory function of CD244 in human and 
mice may be influenced by other inhibitory and activating receptor 
signals and can also be perturbed by the relative expression of SAP, 
EAT-2, and ERT molecules involved in the downstream signaling.

CD38 is an enzyme that catalyzes the conversion of beta-
Necotinamide adenine dinucleotide (beta-NAD+) and beta-
necotinamide adenine dinucleotide 2’-phosphate (beta-NADP+)
into cyclic adenosine diphosphate-ribose (ADPR) and nicotinic 
acid adenine dinucleotide phosphate (NAADP). CD38 has been 
shown to trigger the cytotoxic activity of NK cells against tumor 
cells by promoting the granule polarization and degranulation in 
NK cells. The ADPR produced by CD38 gets localized to cytolytic 
granules in response to stimulation and modulates Ca++ signaling, 
thereby causing degranulation in NK cells (72). Another study by 
Mallone et al. showed that CD38 engagement by agonistic mono-
clonal antibody (mAb) induces phosphorylation of CD3-ζ, FcεRI 
and ZAP-70 proteins leading to release of IFN-γ and GM-CSF 
and lysis of target cells (73). CD44 is also constitutively expressed 
by resting NK cells. However, stimulation of NK cells with IL-2 
or IL-15 leads to upregulation and activation of CD44. The low 
molecular weight hyaluronic acid in combination with IL-2, 
IL-12, or IL-18 could trigger activated CD44 and promote IFN-γ 
production in NK cells (74). Crosslinking of CD44 with the mAb 
on NK cells also induces TNF-α production and CD16-mediated 
NK cell cytotoxicity (75).

The triggering of cytokines and chemokines secretion by 
NK cell and NK cell-mediated cytotoxicity requires a synergistic 
combination of several receptors. Using cross-linking antibodies 
to NK receptors, it has been shown that only CD16 alone could 
trigger degranulation of resting human NK  cells while most 
activating receptors such as NKG2D and NCRs could perform 
activation only in combination with other receptors (76, 77). This 
synergistic activation of several receptors leads to convergence 
of signals toward a central signaling molecule so that its level 
reaches the threshold required for activation of NK cells.

Costimulatory Receptors on NK Cells
Costimulatory receptors synergize with other activating recep-
tors to provide additional stimulation. NKR-P1 in mouse acts as 
activating as well as an inhibitory costimulatory receptor. NKR-
P1 is a member of type II glycoprotein receptors of C-type lectin 
superfamily and consist of five members: NKR-P1A, -B, -C, -D, 
and -E. NKR-P1C is mostly known to be associated with NK1.1 
molecules and provides activating signal whereas NKR-P1B 
and -D contain ITIM and display inhibitory function (78, 79). 
Another costimulatory activating receptor is DNAX accessory 
molecule-1 (DNAM-1) or CD226, a member of Ig superfamily. 
DNAM-1 recognizes CD155 (also known as Poliovirus recep-
tor or PVR) and CD112 (Nectin-2) on tumor cells and induces 
NK cell-mediated lysis (80). DNAM-1 has been shown to bind 
lymphocyte function-associated antigen 1 and promote adhesion 
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FiGURe 4 | The cytotoxic response of natural killer (NK) cells. The NK cell cytotoxic response is tightly regulated in four discrete stages. (a) Step 1: Recognition of 
target cells by NK cell results in the reorganization of actin cytoskeleton and the formation of immunological synapse, and clustering of cell adhesion molecules such 
as lymphocyte function-associated antigen 1 (LFA-1) and CD2. (b) Step 2: microtubule organizing center (MTOC) and secretory lysosome polarize toward the 
immunological synapse. (C) Step 3: docking which involves moves close to the plasma membrane of NK cell at the synapse. (D) Step 4: secretory lysosome fuse 
with the target cell plasma membrane and releases the cytotoxic granules into the target cell.
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of monocytes suggesting that DNAM-1 also plays a significant 
role in NK cell migration (81).

CYTOTOXiC aND eFFeCTOR iMMUNe 
ReSPONSe OF NK CellS

Cytotoxic immune Response of NK Cells
The NK cell cytotoxic response is divided into four major steps. 
(1) Formation of immunological synapse between the target cell 
and NK cell, followed by reorganization of actin cytoskeleton. (2)  
Polarization of microtubule organizing center (MTOC) and 
secretory lysosome toward lytic synapse. (3) Docking of secre-
tory lysosome with the plasma membrane of NK cells. (4) Fusion 
of secretory lysosome with the plasma membrane of target cells. 
This entire process leading to the release of cytotoxic molecules 
such as perforin and granzyme is known as degranulation. This 
degranulation of NK cells is often used for indirect measurement 
of NK cell cytotoxic activity (82) (Figure 4). During the NK cell 
degranulation, lysosomal-associated membrane protein-1 
(LAMP-1 or CD107a) and -2 (LAMP-2 or CD107b) transiently 
appears on the surface of NK cells. The expression of LAMP-1 
on NK cell surface has been used as an indirect measurement of 
NK cells cytolytic function (83). Perforin released in the target 
cells polymerizes and forms the pores, and facilitating the entry 
of granzymes into the target cell. Granzymes are serine proteases 
which activate caspase molecules leading to induction of apopto-
sis of target cells (24, 82, 84). Perforin-dependent cytotoxicity is 
crucial for NK cell-mediated control of several tumors (85, 86).

Another process by which NK cell mediates killing of target 
cells involves death receptor-induced target cell apoptosis. NK cells 
express TNF receptor ligand—Fas ligand (FasL), TNF, and TRAIL 
which binds to their corresponding receptor on target cells (87). 
Engagement of death receptor with its cognate ligand induces a 
conformational change in the receptor and recruitment of adap-
tor protein leading to apoptosis of target cells (88, 89). NK cell- 
mediated control of methylcholanthrene (MCA) metastasis has 
been shown to be TRAIL dependent (90). Fas-FasL pathway con-
tributes to the antimetastatic potential of IL-18-treated NK cells 
(91). These studies suggest that NK cells use various molecules to 
induce the cytotoxic function against physiologically stressed cells.

It has been shown that exosomes produced by immune cells 
can promote the antitumor immunity whereas tumor cell-
derived exosomes in tumor microenvironment can inhibit the 
effector immune response (92). Recent studies have shown that 
both resting and activated human NK cells secrete exosomes that 
have NK cell-specific marker CD56 and several other NK cell-
associated molecules such as NKp30, NKp44, NKG2D, and 
NKp46. These exosomes also have FasL and perforin molecules 
and exert cytotoxic activity against various human tumor cell 
lines (93). Another study reported that exosomes produced by 
NK  cells that have been pre-exposed to NB  cells (Nx-ANKs) 
show higher expression of different activating receptors such as 
NKp30, NKp44, NKp46, and NKG2D and also have enhanced 
cytotoxicity when compared with untreated NK cells (92). These 
findings suggest that NK  cells pre-exposed to NB  cell-derived 
exosomes have undergone education which results in efficient 
cytotoxicity against NB tumors (92).

are
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effector immune Response of NK Cells
Activated NK  cells secrete a wide variety of cytokines such as 
IFN-γ, TNF-α, GM-CSF, IL-10, IL-5, and IL-13 and chemokines 
such as MIP-1α, MIP-1β, IL-8, and RANTES (94–96). IFN-γ is 
one of the most potent effector cytokines secreted by NK cells 
and plays a crucial role in antiviral, antibacterial, and antitumor 
activity. IFN-γ has been shown to modulate caspase, FasL, and 
TRAIL expression and activates antitumor immunity (97). The 
tumor stromal cells control the secretion of effector cytokines 
in NK  cells. Signaling through activating receptor NKG2D on 
NK cell has been shown to promote the release of IFN-γ (98). 
IL-12 produced by dendritic cells, macrophages, and neutrophils 
can also induce the production of IFN-γ in NK  cells, which 
could be further enhanced by TNF-α, IL-1, and IL-18 (99, 100). 
In contrast, TGF-β inhibits the production of IFN-γ, TNF-α, and 
GM-CSF in NK  cells (101). IL-10 is also a potent inducer of 
NK cell proliferation, cytotoxic function, and IFN-γ production 
in combination with IL-18 (102). Treatment with IL-18 promotes 
regression of melanoma tumor in the NK cell-dependent manner 
(103). IL-12 treatment inhibits tumor metastasis in the NKG2D 
and perforin-dependent manner, while the antimetastatic effect 
of IL-18 in the same setting is FasL dependent (43). IL-21 has also 
been known to induce NK cell activation in vivo in melanoma 
and renal cell carcinoma patients and also mediate rejection of 
various murine tumors in a NKG2D-dependent manner (104, 
105). IL-15 is known to activate NK cell function and suppress 
tumor growth. These studies point out that apart from the NK cell 
cytotoxic function, cytokines secreted by the NK cells also pro-
vide a significant boost to the antitumor immunity. Similarly, the 
cytokines secreted by other immune cells or stromal cells in the 
tumor microenvironment can positively or negatively influence 
the antitumor function of NK cells.

TOleROGeNiC aND iNFlaMMaTORY 
FUNCTiON OF NK CellS

NK Cell Tolerance and education
Natural killer cell tolerance to self-molecules is dependent on 
recognition of MHC class I molecules on target cells by inhib-
itory receptors present on NK  cells. Many of the activating 
receptors expressed by mouse and human NK  cells recognize 
self-ligands, thus raising the possibility of autoreactivity unless 
restrained by inhibitory receptors. When NK  cells develop in 
the presence of self-ligand for the activating receptor, they are 
tolerant toward the specific activating receptor. The activat-
ing receptor Ly49D recognizes MHC class I molecule H-2Dd. 
When NK  cells develop in mice lacking H-2Dd, they are able 
to kill H-2Dd-expressing target cells. However, Ly49D+ NK cells 
from H-2Dd-expressing mice show tolerance toward H-2Dd-
expressing target cells (106). One possible mechanism for 
this self-tolerance is the coexpression of H-2Dd recognizing 
inhibitory receptors Ly49A and Ly49G2 along with Ly49D on 
NK cells. The Rae-1 family of ligands that bind to the activating 
receptor NKG2D are known to be constitutively expressed in the 
embryos but absent in healthy adult tissues. Adoptive transfer 
of bone marrow cells from Rae-1ε transgenic mice to syngeneic 

wild-type mice leads to efficient rejection of adoptively trans-
ferred NK cells (107). However, NK cells from Rae-1ε transgenic 
mice do not kill Rae-1-expressing tumor cells suggesting that 
NK  cells developed in the presence of ligands for the specific 
activating receptor NKG2D show tolerogenic phenotype toward 
cells expressing those ligands (108).

The importance of inhibitory receptor-MHC class I engage-
ment in NK cell tolerance and education can be understood from 
the fact that NK cells which develop in the absence of MHC class 
I molecules do not kill MHC class I-deficient tumor cell lines 
or reject MHC class I-deficient allogeneic bone marrow cells 
in vivo (109, 110). The types of inhibitory receptor expression on 
NK cells are varied and stochastic such that various populations 
of NK cell have a distinct combination of inhibitory receptors. 
Recent studies suggested that a significant number of NK cells 
in mouse and human either lack expression of any self-MHC-
specific inhibitory receptors or express receptors specific for non-
self-MHC class I. These subsets of NK cell are non-responsive to 
several activating receptor stimulations in vitro and fail to reject 
MHC class I-deficient bone marrow cells in  vivo (111, 112). 
Thus, engagement of self-MHC class I with inhibitory receptor 
during NK cell development is necessary for full responsiveness 
of activating receptors and rejection of MHC-deficient cells and 
this process is known as NK cell education.

Several mechanisms have been proposed to explain NK cell 
education, one of the models being disarming model. According 
to this model, NK  cells are by default responsive and become 
tolerant to normal cells after the acquisition of self-MHC-
specific inhibitory receptor. The presence of activation pathways 
allows NK cells to reject target cells that lose MHC I molecules 
or upregulate ligands for activating receptors. However, if the 
NK  cell fails to acquire self-MHC class I-specific inhibitory 
receptor, chronic stimulation by normal cells makes them 
hyporesponsive (113). In support of this model, it has been 
observed that transgenic C57BL/6 mice expressing H-2Dd are 
able to reject C57BL/6 bone marrow cells (express H2-Db) while 
transgenic H-2Dd mice having a mosaic expression of H-2Dd 
and H-2Db are unable to reject C57BL/6 bone marrow cells 
(114). The other model, known as licensing or arming model 
suggests that NK cells are initially hyporesponsive and become 
licensed or armed into effector cells after engagement of their 
inhibitory receptors with MHC class I during development. The 
fact that NK cell education does not require SHP-1 and SHIP-1 
phosphatases suggests that inhibitory signals are indispensable 
for NK cell education and supports arming model (115). In addi-
tion to these, another model known as tuning or rheostat model 
is proposed where NK cell response is tuned by the number of 
self-MHC class I-specific receptor expressed on NK cell and the 
affinity of its cognate receptors. Thus, according to this model, 
NK  cell education is a quantitative process, which depends 
on the strength of activating or inhibitory signal received by 
NK cell. If the strength of inhibitory signaling opposes chronic 
activating receptor stimuli, then NK cells are maintained in the 
highest responsive state. In contrast, strong stimulation without 
opposing inhibitory signal sends NK cells to lowest responsive 
state while intermediate net stimulation supports medium 
responsiveness (116).
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NK Cell Memory and antitumor immunity
Although NK  cell is traditionally considered as a part of the 
innate immune system, now it has been shown that these cells 
also display memory cell-like features (117). NK  cell memory 
response has been reported in three circumstances—antigen-
specific memory NK cells in the liver, CMV-specific NK cells and 
cytokine-induced memory-like NK  cells (118). Liver resident 
memory NK cells mediate hapten-specific contact hypersensitiv-
ity response and this reaction is abrogated in mice deficient for 
IL-12, IFN-γ, or IFN-αR signaling (119). Liver memory NK cell 
response to the melanocyte-specific prohapten monobenzone is 
dependent on macrophage activation through inflammasome 
NLRP3 and IL-18 (119). The memory NK cell response is also 
reported in MCMV virus infection. Ly49H+ NK cells recognize 
the m157 protein of MCMV virus and are capable of forming long-
lasting memory following MCMV reinfection (120). In human, 
memory NK  cells respond to human CMV (HCMV) virus is 
known to express a high level of activating receptor NKG2C, and 
these NKG2C+ NK  cells expand during acute infection as well 
as during secondary challenge (121). Murine cytokine-induced 
memory NK  cells initially activated with a high dose of IL-12 
and IL-18 were shown to have increased cytokine secretion when 
restimulated after two weeks of primary antigen challenge (122). 
Similarly, human cytokine-induced memory NK cells with long-
term effector response have been reported in response to IL-12, 
IL-15, and IL-18 stimulation (123).

Antitumor effect of memory NK cell has been studied mostly 
in HCMV model. CD56dimNKG2C+ NK  cells from a HCMV+ 
donor are shown to have increased TNF-α and IFN-γ production 
in response to K562 tumor cell stimulation. These cells preferen-
tially expand during HCMV reactivation in hematopoietic cell 
transplantation (HCT) recipients and play a significant role in 
mediating relapse protection with the better post-HCT outcome 
(124). Adoptively transferred IL-12-, IL-15- or IL-18-activated 
murine NK  cells are shown to display memory features and 
inhibit tumor growth in IFN-γ and perforin-dependent man-
ner. These preactivated NK cells possess demethylation of CpG 
residue in the CNS1 region of IFN-γ locus and show antitumor 
activity (125, 126). Human IL-12-, IL-15-, and IL-18-induced 
memory-like NK  cells show higher expression of granzyme 
B and perforin and display enhanced cytotoxicity against 
K562 tumor cells (123). These NK cells are also shown to have 
increased TNF-α and IFN-γ production in response to primary 
acute myeloid leukemia (AML) blasts and control AML growth 
in mice. Furthermore, its therapeutic use resulted in complete 
remission of nine AML patients in phase I clinical trial (127). 
Thus, harnessing the potential of NK cell memory for therapeutic 
purpose remains a promising translational approach to control 
tumor growth in the clinic.

NK Cell-baSeD CaNCeR 
iMMUNOTHeRaPY

NK Cells in Cancer immunosurveillance
Natural killer cells play a pivotal role in cancer immunosurveil-
lance and also cooperate with other adoptive immune cells for 

antitumor immunity (98, 128). Removal of NK  cells has been 
shown to increase the incidence of MCA-induced sarcoma 
suggesting that NK cells are involved in tumor cell elimination 
(129). A study by O’Sullivan et al. provided further evidence for 
the role of NK cell in immunosurveillance where the incidence 
of MCA-induced sarcoma was greater in RAG2−/−γc−/− mice 
(lacking both adaptive immunity and NK cells) when compared 
with RAG2−/− mice (lacking only adaptive immunity) (130). The 
mechanisms of NK cell elimination of MCA-induced sarcomas 
involve molecules like NKG2D, IFN-γ, and perforin (97, 131). 
The perforin-dependent NK cell activity was reported to control 
B cell lymphomas and mammary carcinoma (132). In a mouse 
model of liver carcinoma, it was observed that restoration of 
endogenous p53 in tumor cells promote NK  cell-mediated 
elimination of senescent tumor cells (133). However, many 
tumors escape NK  cell attack and grow progressively. Tumor 
cells secrete immunosuppressive factors such as TGF-β, VEGF, 
indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), 
and adenosine which inhibit antitumor immune functions (134). 
Pietra et al. have demonstrated that melanoma cell-derived IDO 
and PGE2 inhibit the cytolytic activity of NK cells in vitro (135). 
We have also shown that melanoma tumor-infiltrating NK cells 
downregulate several activating receptors, upregulate inhibitory 
receptors and display poor degranulation when compared with 
NK  cells in the secondary lymphoid tissues (98). The intratu-
moral NK cells are also known to have reduced proinflammatory 
cytokines and cytokine receptors expression which might hamper 
their antitumor response in the tumor microenvironment (98). 
Melanoma-associated fibroblasts have been reported to suppress 
the cytotoxic activity of NK cells in both contact-dependent and 
contact-independent manner (136). Several other suppressive cell 
types such as regulatory T cells (Tregs) and myeloid-derived sup-
pressor cells (MDSCs) can impair antitumor immune response 
by inhibiting the function of tumor-specific effector T cells. Tregs, 
MDSC, and M2-macrophages also known to inhibit the cytolytic 
function of intratumoral NK  cells through the production of 
IL-10 and TGF-β (137–139).

adoptive NK Cell Therapy
Harnessing NK cells for the therapeutic purpose is an attractive 
option and has received rejuvenating interest in recent times 
(Figure 5). NK cells immunotherapy offers several advantages. 
First, use of NK  cells will bypass the need of antigen-specific 
T cells. Second, NK cells can directly kill tumor cells and can also 
rapidly secrete proinflammatory cytokines that can potentiate 
the adaptive immune response (128). Finally, NK cells are easy 
to isolate and manipulate and have a relatively short lifespan. 
Therefore, the possibility of overexpansion of transferred NK cells 
in the recipient’s body is less.

The source of NK cells for adoptive therapy can be autolo-
gous (from the same patient) or allogeneic (from other healthy 
donors). In autologous NK cell-based adoptive therapy, NK cells 
are isolated from patients using CD56 beads, activated ex vivo and 
transfused back into the same patient followed by administra-
tion of cytokines such as IL-2 to support their in vivo expansion 
and stimulation (Figure 5A). Transfusion of ex vivo activated 
and expanded autologous NK cells in breast cancer, lymphoma, 
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renal cell carcinoma, metastatic melanoma, and gastrointestinal 
cancer patients did not lead to favorable anticancer response 
(140–142). In most cases, there was either an increase in cir-
culating NK cells or in vitro cytokine release or cytotoxicity by 
adoptively transferred NK cells but it was not enough to medi-
ate tumor regression in the patients. The failure of autologous 
NK cell adoptive therapy to produce clinical outcome insisted 
on the use of allogeneic NK  cells for immunotherapy. The 
advantage of allogeneic NK cells over autologous ones is due to 
its less likely to be inhibited by NK cell-mediated recognition 
of self-MHC molecules. Adoptive transfer of haploidentical 
NK  cells from KIR-mismatched donor has been shown to be 
safe and also mediate complete remission in AML patients  
(143, 144). In most clinical trials of NK cell-based immunother-
apy, peripheral blood (PB) was utilized as a source of NK cells. 
However, alternative sources of NK cells such as bone marrow, 
hESCs, and cord blood (CB) NK cells can also be explored for their 

therapeutic benefits as a cellular therapy for cancer. Successful 
expansion of CB NK cells using artificial antigen presenting cells 
has been reported and shown to have in vivo antitumor activity 
against multiple myeloma (145, 146). In contrast to hematologi-
cal malignancies, NK cell-based immunotherapy was found to 
be less promising for solid tumor. Early phase clinical trial 
using the infusion of activated allogeneic NK  cells in ovarian 
and breast cancer patients showed transient donor chimerism 
but did not show a significant expansion of transfused NK cells 
(147). NK  cell-based immunotherapy of solid tumor posed 
several challenges such as reduced infiltration of NK cells into 
tumor microenvironment, lack of susceptibility of tumor cells 
to NK  cell cytotoxicity and alteration of NK  cell function by 
suppressive immune cells. Combining NK  cell-based immu-
notherapy with approaches that can target immunosuppressed 
tumor microenvironment may provide benefit in the treatment 
of solid tumors.
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Cytokine Therapy
Several cytokines such as IL-2, IL-15, IL-12, IL-18, and IL-21 
can activate and boost NK cell function (Figure 5B) (148–151). 
Among these, IL-15 stands out to be the most promising cytokine 
to be used as an activator of NK cells. Infusion of IL-15 into the 
metastatic malignant patients in a phase I clinical trial showed 
proliferation and expansion of NK cell along with other antitu-
mor immune cells such as CD8+ T cells and γδ T cells. This study 
establishes a safe tolerance of IL-15 in patients and also achieved 
reduction of lung lesions in two patients (152). The superagonist 
IL-15-1L-15Rα-Sushi-Fc has been shown to promote NK  cell-
mediated antitumor activity against breast, lung, and colon car-
cinomas in preclinical studies and holds a promising approach 
in the clinical trial (153, 154).

Chimeric antigen Receptor (CaR) NK Cell 
Therapy
Adoptive transfer of NK cells that are engineered to express CAR 
against a specific tumor antigen such as ganglioside GD2, 2B4 
(CD244) receptor, CD138, and CS1 have also been tested in 
several preclinical models (Figure 5C). In these models, CAR-
transduced NK cells demonstrated efficient killing of tumor cells 
in  vivo and in  vitro (155–158). Interestingly, NKG2D-DAP10-
CD3ζ-expressing NK  cells are also shown to have enhanced 
cytotoxic activity and cytokine secretion potential in vitro and 
display enhanced antitumor activity to osteosarcoma (159). 
Large-scale isolation and expansion of NK cells from human PB 
and difficulties in the transfection of PB NK cells have hindered 
the production of human CAR NK cells. For these reasons, the 
human NK92 cell line consisting of activated NK  cells have 
emerged as a popular choice for use in NK cell immunotherapy 
because of their relative ease in transfection. NK92 cells engi-
neered to express CD19 CAR are shown to specifically target 
CD19 expressing leukemia cells (160, 161). Similarly, NK-92 
cells transduced to express both wild-type and mutated EGFR 
CAR display cytolytic activity as well as IFN-γ production against 
glioblastoma cells (162). NK-92 cells expressing receptor tyrosine 
kinase ErbB2 (HER2)-specific CAR were also shown to regress 
glioblastoma (GBM) tumors in an orthotopic GBM xenograft 
model (163). Currently, umbilical CB-derived CAR-engineered 
NK cells (CD19-CD28-zeta-2A-iCasp9-IL-15 transduced) are in 
clinical trial for relapsed/refractory CD19+ B lymphoid malignan-
cies (NCT03056339). The NK-92 cell line engineered to express 
anti-CD33 or anti-CD7 linked to TCR zeta, CD28 and 4-1BB 
signaling domains are undergoing clinical trials for CD33+ AML 
(NCT02944162) or CD7+ relapsed or refractory leukemia and 
lymphoma (NCT02742727), respectively. These studies suggest 
that CAR NK cells have a strong potential to control the tumor 
growth that shows resistance to conventional immunotherapy.

mab-based Therapy
Natural killer cells express various activating, costimulatory, 
and inhibitory receptors that can be targeted to improve NK cell 
cytotoxicity (Table 1). One such receptor is CD16, which binds to 
Fc region of antibodies and promotes antibody-dependent cell-
mediated cytotoxicity (ADCC) of tumor cells. The combination 

of Rituximab and IL-2 has been shown to induce ADCC and 
increase NK cell activity (164). The ADCC activity of NK cells 
through CD16 can be enhanced by using bispecific or trispecific 
antibodies which incorporate Fv region recognizing tumor cell 
antigen along with Fv region that binds CD16. In the multiple 
myeloma patients, the effector immune cells do not easily rec-
ognize malignant plasma cells. To make these malignant cells 
as effective target to NK  cell, a recombinant bispecific protein 
(ULBP2-BB4) were developed where ULBP2 interact with 
NKG2D on NK cells and BB4 moiety binds to CD138 expressed 
on the plasma cells. This bispecific fusion protein showed 
enhanced NK  cell-mediated elimination of primary malignant 
plasma cells in the allogeneic and autologous setting and CD138+ 
human multiple myeloma cell lines, U-266 and RPMI-8226 
(165). Administration of IL-15Rα chain in exosome along with 
NKG2D or NKp30 ligand to restore NK cell function has also 
been proved to be beneficial and resulted in progression-free 
survival in metastatic melanoma and non-small cell lung cancer 
patients (166). Further, blockade of inhibitory receptor signaling 
and immune checkpoints might serve as an alternative strategy 
to boost NK  cell function (Figure  5D). Although tumor cells 
downregulate HLA class I, many tumor cells retain MHC class I  
molecules and their interaction with inhibitory receptors 
expressed on NK cells might dampen NK cell function. In such 
scenario, blockade of HLA-inhibitory receptor interaction might 
prove to be beneficial. IPH2101, a human IgG mAb which 
blocks signaling mediated by inhibitory receptor KIR2DL-1, -2, 
-3 showed enhanced NK cell activation and complete remission 
in AML patient in the phase I clinical trial but failed to show 
substantial clinical benefits in multiple myeloma patients in 
phase II trial (167, 168). Blocking of NKG2A-HLA-E interac-
tions was also shown to increase NK cell cytotoxic activity (169). 
IPH2201, a blocking mAb to NKG2A is currently in clinical trial 
for solid tumors (NCT02671435 and NCT02643550). In future, 
the combinatorial approach targeting a different aspect of NK cell 
function might prove beneficial for the treatment of cancer.

CONClUSiON

The understanding of the cellular and molecular biology of 
NK cell has paved way for the design of NK cell-based immu-
notherapeutic strategies. However, the majority of the clinical 
trials attempting NK cell-based immunotherapy in solid tumor 
(including adoptive transfer of autologous, allogeneic NK cells, 
NK cell lines or CAR NK cells, cytokine-based therapy, anticancer 
inhibitors, or agonist of activating receptors) have only achieved 
low efficacy. One of the primary challenges for NK  cell-based 
immunotherapy for solid tumor is migration and persistence 
of cytotoxic NK  cells into the tumor microenvironment. The 
chemokines expressed in the tumor microenvironment and 
cognate expression of chemokine receptor on NK  cells help in 
the efficient mobilization of NK cells in the tumor. CXCR3 has 
been shown to regulate the accumulation of CD27high NK cells in 
subcutaneous lymphoma (170). The chemokines required for the 
migration of NK cells in various tumor tissues need to be identi-
fied. For the better efficacy of adoptive NK cell therapy in vitro 
activated, manipulated or genetically-modified NK  cell has to 
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have an expression of cognate chemokine receptors in order to 
efficiently mobilize into the tumor microenvironment. The use of 
an agonist of chemokine receptors that promote NK cell migra-
tion in the tumor microenvironment and combining cytokines 
or small molecule drugs that promote the cytolytic function and 
migration of NK  cell in the tumor microenvironment should 
be explored as an alternative strategy. Besides, methodologies 
for the adequate large-scale manufacturing of large numbers of 
NK cells for its clinical use need to be developed.

Emerging evidence also suggests that tumor cells modulate 
the NK cell phenotype and function. To address this, in depth 
knowledge of the suppressive network that impairs NK  cell 
effector function in the tumor microenvironment is needed. A 
comprehensive study of NK cell signaling pathways should also 
be carried out to identify novel targets that can be used to improve 
the NK cell antitumor response. Particular emphasis should be 
given on identification of unique pathways or checkpoints of 

NK cell activation that can be exploited to develop small molecules 
that stimulate NK cell function in the tumor microenvironment. 
The patient receiving radiation therapy or chemotherapy as part 
of condition regimen before NK cell transfusion and its effect on 
NK cell function need to be critically evaluated. Thus, understand-
ing the cellular and molecular biology of NK cells will allow us to 
identify novel molecules that could be used as immunotherapy.
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