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Chaperonins are a subclass of molecular chaperones that assist cellular proteins to fold

and assemble into their native shape. Much work has been done on Type I chaperonins,

which has elucidated their elegant mechanism. Some debate remains about the details

in these mechanisms, but nonetheless the roles of these in helping protein folding have

been understood in great depth. In this review we discuss the known functions of atypical

Type I chaperonins, highlighting evolutionary aspects that might lead chaperonins to

perform alternate functions.
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MOLECULAR CHAPERONES

Molecular chaperones comprise of a wide range of proteins playing key roles in cellular homeostasis
and are responsible for assisting in protein folding, assembly of multimeric proteins, translocation
of proteins within and across cell, degradation of unwanted, or misfolded proteins during normal
cellular processes and stabilization of proteins by preventing aggregation and assisting in refolding
under stress conditions (Lindquist, 1986; Lindquist and Craig, 1988).

Proteins reported to have chaperone activity were initially discovered as those overexpressed
during heat shock and hence were named as the heat shock proteins (Hsp). Apart from heat
shock, other stress condition such as carbon, nitrogen, or phosphate limiting conditions were also
known to induce molecular chaperones. These proteins are classified according to their molecular
weight into five major families: (a) Hsp100 family, (b) Hsp90 family, (c) Hsp70 family, (d) Hsp60
family, and (e) small heat shock protein family (sHsp) (Bohen et al., 1995; Schirmer et al., 1996;
Bukau and Horwich, 1998). The chaperones are also classified based on their mode of action
into: (a) Foldases, Chaperones that assist refolding of unfolded proteins by using ATP, e.g., Hsp70
and Hsp60, (b) Holdases, Chaperones that bind folding intermediates and prevent aggregation,
e.g., sHsp and Hsp40, and (c) Disaggregases, Chaperones which actively disaggregate the harmful
protein aggregates, which might lead to their small fragments, e.g., members of AAA + ATPase
superfamily and Hsp100. This type of classification holds true with few exceptions (Richter et al.,
2010; Kim et al., 2013). Much of our understanding on the mechanisms of chaperone-assisted
protein folding has been derived from work on Hsp60 and Hsp70 families of chaperones. This
review focuses on Hsp60 class of molecular chaperones, highlighting Hsp60 with atypical structure
and function.

Hsp60 Family/Chaperonins
The 60 kDa chaperones form large oligomeric rings, and are also referred to as the chaperonins.
Chaperonins can be further sub-classified into two groups on the basis of requirement of
co-chaperonins and their cellular location. Type I chaperonins are found in the cytoplasm of
prokaryotes and in the mitochondrion and chloroplast of eukaryotes. They require the assistance
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of the co-chaperonin i.e., Hsp10, which acts as a cap on
the ring. The well-studied Type I chaperonin is known as
the GroEL-GroES system in Escherichia coli. Its homologs
are Cpn60/Cpn20 in chloroplasts, and mtHsp60/mtHsp10 in
mitochondrion (Cheng et al., 1989; Hayer-Hartl et al., 1995;
Dickson et al., 2000). Type II chaperonins are found in the
cytoplasm of eukaryotes and in the archaebacterial micro-
organisms. They have an in-built lid and hence do not
require co-chaperonins for their function (Ranson et al., 1998).
Example of Type II chaperonin includes eukaryotic TriC/CCT
machinery (TCP-1 ring complex/chaperonin containing TCP-1
complex), which is made up of 8 subunits and the thermosome
in archaebacteria. Contrary to Type I chaperonins, substrate
independent capture of Type II chaperonins require the
assistance of prefoldin and Hsp70 homologs (Iizuka et al., 2004;
Cuéllar et al., 2008). Recently, a third group known as Type
III chaperonins was reported which are structurally similar to
Type II chaperonins but mechanistically and phylogenetically
distinct from both Type I and Type II chaperonins e.g.,
Carboxydothermus hydrogenoformans chaperonin (Ch-CPN)
(Techtmann and Robb, 2010; An et al., 2017; Figure 1). The Type
I, II, and III chaperonins are also known as Group I, II, and III
chaperonins.

Structure-Function of Type I Chaperonins:
Prokaryotic Cytosol
E. coli GroEL-GroES

Structural and functional studies on E. coli GroEL have shown
that it forms a tetradecameric structure composed of two
heptameric rings stacked on each other forming a cavity, which
changes its character from being predominantly hydrophobic to
hydrophilic upon binding GroES. Substrate protein folding takes
place in this cavity with the assistance of co-chaperonin GroES,
which is a cap-like heptameric structure (Mande et al., 1996).
Each GroES monomer is of 10 kDa size. The GroEL monomer is
demarcated into three domains namely apical, intermediate, and
equatorial domain. Each monomer is∼57 kDa in size.

There are two models proposed for the GroEL-GroES
mediated substrate protein folding. Asymmetric/sequential
model, which is accepted widely. In this model the GroEL and
GroES are present stoichiometrically in 2:1 ratio (14:7 subunit
ratio). In the other model known as the symmetric/simultaneous
model, which is based on the recently observed GroEL-GroES
complex, both rings of GroEL are capped by co-chaperonin
GroES in the stoichiometric ratio of 1:1 i.e., (GroEL-GroES)2, and
subunit ratio of 14:14 (Sameshima et al., 2008; Ye and Lorimer,
2013; Fei et al., 2014). Symmetric (GroEL-GroES)2 complex has
been observed both in the presence and absence of substrate
protein suggesting a transient intermediate state in the folding
reaction cycle.

Structure-Function of Type I Chaperonins:
Endosymbiotic Organelles
Chloroplast and Mitochondrial Chaperonins

The chloroplast chaperonins are typically referred to as Cpn60
(GroEL homologs) and Cpn10 (GroES homologs). The Cpn60

chaperonins are made up of multiple subunits which are
diverged into two related but distinct α and β types (Dickson
et al., 2000; Hill and Hemmingsen, 2001). Contrary to bacterial
chaperonins, which contain multiple subunits and prefer homo-
oligomerization (Ojha et al., 2005; Gould et al., 2007), chloroplast
chaperonins form hetero-oligomers with its two types of
chaperonin α and β subunits. Heterogeneity also exists in the
co-chaperonin structure. Cpn10 is similar to the standard co-
chaperonin, forming heptameric single ring of 10 kDa subunits
(Koumoto et al., 2001; Sharkia et al., 2003). Cpn20 has two
Cpn10-like polypeptide sequences joined in tandem. The purified
Cpn20 exists as a tetramer ring-like structure containing 20
kDa subunit. It is fully functional in vitro, helping refolding of
denatured protein in presence of both chloroplast Cpn60 and E.
coli GroEL (Tang et al., 2006). Moreover, the Chlamydomonas
reinhardtii Cpn10 assist GroEL only in presence of Cpn20 (Tsai
et al., 2012). Thus, a considerable heterogeneity exists in the
oligomeric assembly of chloroplast chaperonins.

The human mitochondrial chaperonin, mtHsp60 is known
to have a protein-folding mechanism (mitochondrial protein)
distinct from GroEL-GroES system and requires a single
heptameric ring to carry out its protein folding function
along with its co-chaperonin, mtHsp10 (Viitanen et al., 1992;
Nielsen and Cowan, 1998). However, the crystal structure of
mitochondrial chaperonin in complex with its co-chaperonin,
mtHsp60-mtHsp10 depicts a unique intermediate stage where
mtHsp60-mtHsp10 forms a symmetric double-ring football-like
structure, (mtHsp60)14 + 2 (mtHsp10)7.

Type I Chaperonins: Non-canonical
Features
Multiple Chaperonins Across Species

Analysis of completely sequenced genomes suggest that about
30% of all the genomic sequence data possess multiple copies
of gene sequences encoding chaperonins (Lund, 2009; Kumar
et al., 2015). Distribution of these multiple chaperonins based
on extensive phylogenetic analysis suggest that multiple copies
of chaperonin genes exist predominantly in five phyla, namely,
(a) phylum Actinobacteria, (b) phylum Firmicutes, (c) phylum
Cyanobacteria, (d) phylum Chlamydia, and (e) α-Proteobacteria
phylum (Kumar et al., 2015).

Actinobacteria
Actinobacteria are Gram-positive bacteria and possess high G
+ C content in their genomes, e.g., Mycobacterium tuberculosis,
Mycobacterium leprae, and Bifidobacterium longum. These
species typically possess two copies of chaperonin genes, with
one of the copies being present on an operon-like structure.
The other copy of Cpn60 exists as an independent gene without
the presence of Cpn10 gene (Rinke de Wit et al., 1992).
The actinobacterial chaperonin genes are under the regulatory
control of HrcA transcription factor which binds to upstream
CIRCE (controlling inverted repeat of chaperone expression)
sequence (Duchêne et al., 1994; Grandvalet et al., 1998). In some
cases regulation is mediated through HspR transcription factor
binding to upstream HAIR (HspR Associated Inverted Repeat)
sequence (Barreiro et al., 2004).
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FIGURE 1 | Structural features of the Type I, Type II, and Type III chaperonins. The comparative structure analysis of Type I, Type II, and Type III chaperonins.

Structures were downloaded from the RCSB with codes of PDB: 1AON, 3RUW, and 5X9U, respectively. Type I chaperonin is demarcated into Apical, Intermediate,

and Equatorial domains, analogous regions of which are shown in Type II and III chaperonins using dotted lines. Type II chaperonin has a characteristic built-in lid in

the structure that plays the role of co-chaperonin GroES of Type I chaperonin. Type III chaperonins are structurally similar to Type II chaperonins in having built-in-lid.

However, the sequence, structure and function of the lid are distinct in Type II and Type III chaperonins (An et al., 2017). The PyMOL program (PyMOL Molecular

Graphics System, version 1.3) was used to generate this figure.

Firmicutes
Firmicutes are Gram-positive bacteria and possess low G
+ C content in their genomes, e.g., Staphylococcus aureus,
Desulfitobacterium dehalogenans, and C. hydrogenoformans.
Firmicutes are known to possess both prokaryotic-like Type I
chaperonin genes and archael-like chaperonin genes classified
as Type III chaperonin. Type I chaperonins are arranged in
an operonic arrangement with the co-chaperonin, while Type
III chaperonin gene is located in the dnaK operon. Both the
Type 1 and Type III chaperonin genes are regulated by HrcA
transcription factor (Techtmann and Robb, 2010).

Chlamydiae
Chlamydiae are mostly obligate intracellular pathogens, e.g.,
Chlamydia trachomatis, Chlamydia pneumonia, and Chlamydia
psittaci. Chlamydial species possess three copies of chaperonin
genes (McNally and Fares, 2007). Operonic arrangement suggests
that only one copy of the chaperonin genes exists along
with its co-chaperonin. However, other chaperonin genes are
located separately. Regulation of chlamydial chaperonin genes is
complex. The first copy of the chaperonin gene is induced by
heat shock and regulated by HrcA-CIRCE system. The second
copy of the chaperonin gene is induced when Chlamydia are
inside monocyte or macrophages (Kol et al., 1999), and the third
copy of the chaperonin gene is induced when Chlamydia are in
Hep-2 cells (Gérard et al., 2004). Such types of expression and
regulation of chaperonin genes suggest life-cycle specific patterns
and independent functional roles for them.

α-proteobacteria
Rhizobia, which belong to the α-proteobacteria class, are
symbiotic organisms living in association with leguminous plants

in the root nodules and are involved in nitrogen fixation,
e.g., Bradyrhizobium japonicum, Rhizobium leguminosarum.
Rhizobia contain most number of copies of chaperonins. B.
japonicum has seven copies of chaperonin genes (Fischer et al.,
1993). R. leguminosarum is a well-characterized organism and
has three copies of chaperonin genes. Gene arrangement in
all these organisms suggests that the three copies of the
chaperonin gene form separate operons with their respective co-
chaperonin genes (George et al., 2004). One of the chaperonin
operons is located on the genomic island that contains
genes involved in nitrogen fixation. It is regulated by NiF
factors that regulate nitrogen fixation genes (Ogawa and
Long, 1995). The second copy of the chaperonin gene is not
well-studied and is known to be involved in chaperoning
property of several model substrate proteins (George et al.,
2004).

Cyanobacteria
Cyanobacteria are largely photosynthetic bacteria, e.g.,
Synechococcus platensis, Prochlorococcus marinus, and
Anabaena variabilis. About 90% of the genomic sequences
of the cyanobacterial species contain two copies of chaperonin
genes with one of them being arranged on an operon
while the other chaperonin gene coded separately. Some
cyanobacterial species containing three copies of chaperonin
genes, where two of its chaperonin genes being located
with respective co-chaperonins in the operon while the
third copy of chaperonin genes is independent (Lund,
2009; Kumar et al., 2015). Chaperonin genes existing in
the operonic arrangement with their co-chaperonins are
essential genes while the ones which exist independent
of the co-chaperonin are non-essential (Sato et al., 2008).
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The two cyanobacterial chaperonin genes are positively
regulated by RpoH and negatively regulated by HrcA
proteins. Upon heat shock, one of the chaperonin genes
is induced rapidly while the other chaperonin gene is
gradually induced (Kojima and Nakamoto, 2007; Rajaram
and Apte, 2010). The chaperonin gene that is gradually
induced on heat shock is known to be directly involved in
photosynthesis.

Evolutionary Lineage
As more genomic sequences are becoming available, analysis
of chaperonin genes suggests that distribution and frequency
of multiple copies of chaperonin genes across phyla and
organisms continues to increase (Lund, 2009; Kumar et al.,
2015). In order to understand the cause of multiplicity of
chaperonin genes is either due to horizontal gene transfer
or gene duplication, phylogenetic analysis was carried on
GroEL proteins across species, which revealed that the causes
of existence of multiple copies of GroELs are non-uniform.
In a few cases there is gene duplication event followed by
evolutionary selection such as that observed in myxobacterial
GroELs, mycobacterial first and second copy of GroEL and few
rhizobial GroELs. In the case of the third mycobacterial GroEL
homolog, few rhizobial GroELs and methanosarcinal GroELs,

horizontal gene transfer occurred (Goyal et al., 2006; Kumar et al.,
2015).

It has been proposed earlier in our lab that mycobacterial
GroEL has been duplicated and undergone various selective
pressures to perform distinctive structural and functional
role during the course of evolution (Goyal et al., 2006).
Biophysical and biochemical studies on recombinantly
purified M. tuberculosis GroELs have shown that GroEL1
and GroEL2 exist as lower oligomeric species contrary to
tetradecameric GroEL structure of E. coli (Qamra et al.,
2004). The crystal structure of M. tuberculosis GroEL2 in its
dimeric form highlighted the presence of distinct residues at
the interface region, probably responsible for the change in
oligomerization (Figure 2; Qamra and Mande, 2004). Gene
shuffling and domain swapping studies on M. tuberculosis
GroEL1 suggest that the equatorial domain is responsible
for failed oligomerization. The apical domain can withstand
large insertions and deletions (Kumar et al., 2009). Around
the same time it was shown that GroEL1 has evolved to
promiscuously bind nucleic acids (Basu et al., 2009) and
oligomerization is facilitated by phosphorylation of serine
residues (Kumar et al., 2009). Since GroEL2 is known to be
essential chaperonin in Mycobacteria, whereas the oligomeric
assembly of GroEL1 is regulated post-translationally, it was

FIGURE 2 | The crystal structure of M. tuberculosis GroEL2 superimposed on E. coli GroEL-ES structure. The structure of M. tuberculosis GroEL2 (PDB ID:1SJP)

shows lower oligomeric status (dimer). Colored in blue, green, and red are the Apical, Intermediate and Equatorial domain, respectively. Compared to E. coli GroEL

(PDB ID: 1AON) shown in gray color, the inter-subunit interaction is mediated through Apical domain in M. tuberculosis GroEL2 structure whereas inter-subunit

interaction is through Equatorial domain in E. coli GroEL. Single subunit of M. tuberculosis GroEL2 is aligned to E. coli GroES bound GroEL ring representing

asymmetric model. GroES structure has been removed for simplicity. A single subunit of E. coli GroEL has been shown with the same color-coded domains compared

to M. tuberculosis GroEL2 for comparative analysis. The PyMOL program (PyMOL Molecular Graphics System, version 1.3) was used to generate this figure.
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reported that tetradecameric assembly and precise inter-
domain communication are prerequisite for chaperonin activity
(Chilukoti et al., 2015).

Functional Diversity
It is important to examine whether the presence of multiple
copies of chaperonins are responsible for behaving as canonical
chaperonins or they have diverged to carry out novel functions. It
is also important to note whether these multiple chaperonins act
on common substrates or on distinct pool of substrates. GroELs
are highly conserved across different species and it has been
shown that homologs of chaperonins from other bacteria are
able to function in E. coli suggesting overlapping of substrate
proteins and common mechanism of GroEL function. The
interactions of substrate proteins with GroEL are hydrophobic
in nature, so conformational change mediated exposure of the
apical and the equatorial domains in the cavity plays a key role
in substrate recognition and assists protein folding. Binding of
substrate proteins to GroEL is through α/β domains of proteins
with no sequence similarity (Kerner et al., 2005; Kumar and
Mande, 2011) and further studies suggest that GroEL selectively
binds globular substrates rather than extended polypeptides
(Robinson et al., 1994; Goldberg et al., 1997). Multiple copies
of chaperonins in an organism have also been reported to
have evolved to carry out novel functions. GroEL homolog in
an insect symbiont, Xenorhabdus nematophila has been shown
to be toxic to insects which is mediated through binding to
alpha-chitin. Mutational analysis on these GroEL homologs
suggests that the amino acid critical for this kind of activity
is distinct from the essential chaperonin (Joshi et al., 2008).
In M. tuberculosis, GroEL2 acts as a generalist chaperonin (Hu
et al., 2008) while GroEL1 is reported to be associated with
nucleoids (Basu et al., 2009). Thus, it is apparent that gene
duplication of groEL genes has led to the functional diversity of
chaperonins and/or distinct substrate spectrum for intracellular
protein folding.

Post-translational Modifications/Biofilm
Formation
Post-translational modifications in proteins are employed by
organisms to modulate their physiological processes and adapt
to constantly changing environment (Bernal et al., 2014).
Chaperonins have been reported to be post-translationally
modified in certain organisms, and this modification has been
reported to gain/loss of their function. For example, fractionation
of M. tuberculosis cell lysate has shown that tetradecameric
form of GroEL1 is attained only upon phosphorylation at
serine residues (Kumar et al., 2009). Similarly in another report
it has been shown that phosphorylation occurs at threonine
residues (Canova et al., 2009). Both of these observations suggest
that oligomerization of GroEL1 is a result of post-translational
modification.

Many pathogens evade innate immune response and become
resistant to antibiotics by forming biofilms on epithelial cells
(Hall-Stoodley and Stoodley, 2005). The role of GroEL in
biofilm formation has been elucidated in a few organisms.
For example, GroEL1 mutant of M. smegmatis fails to form

biofilm. Mechanistic studies revealed thatM. smegmatis GroEL1
interacts with the KasA enzyme, which is critical for mycolic
acid biosynthesis involved in biofilm formation (Ojha et al.,
2005). Interestingly, it has been recently reported that GroEL
in pathogenic strain B. anthracis gets phosphorylated and
thereby modulates biofilm formation. These findings highlight
that phosphorylation of GroEL has functional implications
(Arora et al., 2017). Acetylation is another post-translational
modification associated with E. coli and M. tuberculosis
chaperonins, however a functional role has not yet been ascribed
to this modification (Liu et al., 2014). Similarly, mitochondrial
co-chaperonin (mtHsp10) undergoes acetyl modification and
controls folding of mitochondrial proteins under excess nutrient
condition (Lu et al., 2015).

C-Terminal Diversity
Various studies highlight the importance of the C-terminal
residues of GroEL in the overall functioning of the chaperonin
(Tang et al., 2006; Chen et al., 2013). In cases pertaining to
multiple copies of chaperonins, they have distinct pattern of C-
terminal residues. While the C-terminus of GroEL (from E. coli)
has a 13 residue motif (GGM)4M, GroEL homologs from other
organisms (which contain multiple copies of chaperonins) have
distinct C-terminal motifs, such as:

a) Histidine-rich C-terminal, e.g., Mycobacteria (Colaco and
MacDougall, 2014)

b) Pattern-less C-terminus, e.g., Rhizobia (George et al., 2004)
c) Similar (GGM)4M repeats, e.g.,Myxobacteria (Wang et al.,

2013)
d) Lack of GGM-like tail, e.g., Methanosarcina (Figueiredo

et al., 2004)
It is clearly seen that many chaperonin paralogs in different

organisms have GGM-like C-terminus. A wide range of
genomic organization is seen in these chaperonins. Moreover,
differences are also seen in their co-expression with co-
chaperonin and essentiality of their function. Thus, these
paralogs are perplexingly observed to be either essential
or non-essential, co-expressed with their co-chaperonin or
not co-expressed, and possibly function as housekeeping
chaperonins. On the other hand chaperonins not possessing
the GGM-like C-terminus have possibly evolved to carry
out novel functions (Ojha et al., 2005; Wang et al., 2013;
Figure 3).

CONCLUDING REMARKS

Type I chaperonins are important by virtue of their role in
intracellular protein folding. GroEL-GroES system in bacteria
helps folding of about 10–15% of cytosolic proteins. Various
structures of GroEL solved in apo-form, nucleotide-bound form
as well as in complex with co-chaperonin GroES attempt
to explain the role of these chaperonins in protein folding
(Saibil et al., 2013). The existence of multiple chaperonins
and their role in varied functions hints evolutionary pressure
toward adapting to different environmental conditions. The
structure of M. tuberculosis GroEL2 highlights lower oligomeric
state and more exposed hydrophobic surfaces, probably to
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FIGURE 3 | Multiple chaperonins in bacteria displaying diversity at C-terminal. Sequence alignment highlighting C-terminal regions of the representative bacterial

GroEL homologs with the E. coli GroEL. The last C-terminal residues of selected multiple GroELs in different bacteria show divergence from the canonical (GGM)4M

motif of the E. coli GroEL shown in dotted red box. Sequences were retrieved from www.uniprot.org and aligned in MEGA6 using MUSCLE algorithm (www.

megasoftware.net). Formatting of aligned sequences were done in Jalview alignment viewer (www.jalview.org). Residues in the alignment follow the default Clustal

color scheme of Jalview.

increase substrate pool and energy conservation (Qamra and
Mande, 2004; Qamra et al., 2004; Kumar and Mande, 2011).
Owing to the presence of Histidine-rich C-terminal in multiple
chaperonins, these have been proposed to help in alternate
biological functions. M. smegmatis GroEL1 binding to iron
may help in biofilm formation (Ojha et al., 2005). Survival
defect of M. tuberculosis groEL1 knockout strain under low
aeration condition might help in oxygen sensing by directly
binding to metals or help certain metalloproteins in folding
(Sharma et al., 2016). The structure of other homologous
chaperonin proteins will probably answer the myriad of
questions associated with the novel functions of chaperonin
homologs.
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