[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Nandi, M. and Sikri, K. and Chaudhary, N. and Mande, S.C. and Sharma, R.D. and Tyagi, J.S. (2019) Multipletranscription factors co-regulate the Mycobacterium tuberculosis adaptationresponse to vitamin C. BMC Genomics, 20 (1). p. 887.

[img] Text
41.Dr. Mande SC (BMC Genomics) open access.pdf
Restricted to Repository staff only

Download (2534Kb) | Request a copy

Abstract

Latent tuberculosis infection is attributed in part to the existence of Mycobacterium tuberculosis in a persistent non-replicating dormant state that is associated with tolerance to host defence mechanisms and antibiotics. We have recently reported that vitamin C treatment of M. tuberculosis triggers the rapid development of bacterial dormancy. Temporal genome-wide transcriptome analysis has revealed that vitamin C-induced dormancy is associated with a large-scale modulation of gene expression in M. tuberculosis. An updated transcriptional regulatory network of M.tuberculosis (Mtb-TRN) consisting of 178 regulators and 3432 target genes was constructed. The temporal transcriptome data generated in response to vitamin C was overlaid on the Mtb-TRN (vitamin C Mtb-TRN) to derive insights into the transcriptional regulatory features in vitamin C-adapted bacteria. Statistical analysis using Fisher's exact test predicted that 56 regulators play a central role in modulating genes which are involved in growth, respiration, metabolism and repair functions. Rv0348, DevR, MprA and RegX3 participate in a core temporal regulatory response during 0.25 h to 8 h of vitamin C treatment. Temporal network analysis further revealed Rv0348 to be the most prominent hub regulator with maximum interactions in the vitamin C Mtb-TRN. Experimental analysis revealed that Rv0348 and DevR proteins interact with each other, and this interaction results in an enhanced binding of DevR to its target promoter. These findings, together with the enhanced expression of devR and Rv0348 transcriptional regulators, indicate a second-level regulation of target genes through transcription factor- transcription factor interactions. Temporal regulatory analysis of the vitamin C Mtb-TRN revealed that there is involvement of multiple regulators during bacterial adaptation to dormancy. Our findings suggest that Rv0348 is a prominent hub regulator in the vitamin C model and large-scale modulation of gene expression is achieved through interactions of Rv0348 with other transcriptional regulators.read less

Item Type: Article
Depositing User: Mr. Rameshwar Nema
Date Deposited: 24 Feb 2020 11:23
Last Modified: 08 Dec 2021 11:02
URI: http://nccs.sciencecentral.in/id/eprint/771

Actions (login required)

View Item View Item